Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 7(23): 10103-10115, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29238540

RESUMEN

Polyandry, female mating with multiple males, is widespread across many taxa and almost ubiquitous in insects. This conflicts with the traditional idea that females are constrained by their comparatively large investment in each offspring, and so should only need to mate once or a few times. Females may need to mate multiply to gain sufficient sperm supplies to maintain their fertility, especially in species in which male promiscuity results in division of their ejaculate among many females. Here, we take a novel approach, utilizing wild-caught individuals to explore how natural variation among females and males influences fertility gains for females. We studied this in the Malaysian stalk-eyed fly species Teleopsis dalmanni. After an additional mating, females benefit from greatly increased fertility (proportion fertile eggs). Gains from multiple mating are not uniform across females; they are greatest when females have high fecundity or low fertility. Fertility gains also vary spatially, as we find an additional strong effect of the stream from which females were collected. Responses were unaffected by male mating history (males kept with females or in male-only groups). Recent male mating may be of lesser importance because males in many species, including T. dalmanni, partition their ejaculate to maintain their fertility over many matings. This study highlights the importance of complementing laboratory studies with data on wild-caught populations, where there is considerable heterogeneity between individuals. Future research should focus on environmental, demographic and genetic factors that are likely to significantly influence variation in individual female fecundity and fertility.

2.
Ecol Evol ; 3(6): 1529-38, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23789065

RESUMEN

The phenotype-linked fertility hypothesis proposes that male fertility is advertised via phenotypic signals, explaining female preference for highly sexually ornamented males. An alternative view is that highly attractive males constrain their ejaculate allocation per mating so as to participate in a greater number of matings. Males are also expected to bias their ejaculate allocation to the most fecund females. We test these hypotheses in the African stalk-eyed fly, Diasemopsis meigenii. We ask how male ejaculate allocation strategy is influenced by male eyespan and female size. Despite large eyespan males having larger internal reproductive organs, we found no association between male eyespan and spermatophore size or sperm number, lending no support to the phenotype-linked fertility hypothesis. However, males mated for longer and transferred more sperm to large females. As female size was positively correlated with fecundity, this suggests that males gain a selective advantage by investing more in large females. Given these findings, we consider how female mate preference for large male eyespan can be adaptive despite the lack of obvious direct benefits.

3.
PLoS One ; 5(12): e14309, 2010 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-21179210

RESUMEN

BACKGROUND: Multiple mating by female insects is widespread, and the explanation(s) for repeated mating by females has been the subject of much discussion. Females may profit from mating multiply through direct material benefits that increase their own reproductive output, or indirect genetic benefits that increase offspring fitness. One particular direct benefit that has attracted significant attention is that of fertility assurance, as females often need to mate multiply to achieve high fertility. This hypothesis has never been tested in a wild insect population. METHODOLOGY/PRINCIPAL FINDINGS: Female Malaysian stalk-eyed flies (Teleopsis dalmanni) mate repeatedly during their lifetime, and have been shown to be sperm limited under both laboratory and field conditions. Here we ask whether receiving an additional mating alleviates sperm limitation in wild females. In our experiment one group of females received a single additional mating, while a control group received an interrupted, and therefore unsuccessful, mating. Females that received an additional mating did not lay more fertilised eggs in total, nor did they lay proportionately more fertilised eggs. Female fertility declined significantly through time, demonstrating that females were sperm limited. However, receipt of an additional mating did not significantly alter the rate of this decline. CONCLUSIONS/SIGNIFICANCE: Our data suggest that the fertility consequences of a single additional mating were small. We discuss this effect (or lack thereof), and suggest that it is likely to be attributed to small ejaculate size, a high proportion of failed copulations, and the presence of X-linked meiotic drive in this species.


Asunto(s)
Dípteros/genética , Fertilidad , Conducta Sexual Animal/fisiología , Animales , Femenino , Masculino , Meiosis , Reproducción , Selección Genética , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA