Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Gerontol A Biol Sci Med Sci ; 77(10): 1939-1950, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35172336

RESUMEN

This study aimed to characterize the effects of laparotomy on postoperative physical function and skeletal muscle gene expression in male C57BL/6N mice at 3, 20, and 24 months of age to investigate late-life vulnerability and resiliency to acute surgical stress. Pre and postoperative physical functioning was assessed by forelimb grip strength on postoperative day (POD) 1 and 3 and motor coordination on POD 2 and 4. Laparotomy-induced an age-associated postoperative decline in forelimb grip strength that was the greatest in the oldest mice. While motor coordination declined with increasing age at baseline, it was unaffected by laparotomy. Baseline physical function as stratified by motor coordination performance (low functioning vs high functioning) in 24-month-old mice did not differentially affect postlaparotomy reduction in grip strength. RNA sequencing of soleus muscles showed that laparotomy-induced age-associated differential gene expression and canonical pathway activation with the greatest effects in the youngest mice. Examples of such age-associated, metabolically important pathways that were only activated in the youngest mice after laparotomy included oxidative phosphorylation and NRF2-mediated oxidative stress response. Analysis of lipid mediators in serum and gastrocnemius muscle showed alterations in profiles during aging and confirmed an association between such changes and functional status in gastrocnemius muscle. These findings demonstrate a mouse model of laparotomy which recapitulated some features of postoperative skeletal muscle decline in older adults, and identified age-associated, laparotomy-induced molecular signatures in skeletal muscles. Future research can build upon this model to study molecular mechanisms of late-life vulnerability and resiliency to acute surgical stress.


Asunto(s)
Complicaciones Cognitivas Postoperatorias , Transcriptoma , Animales , Modelos Animales de Enfermedad , Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , ARN/metabolismo , Análisis de Secuencia de ARN
2.
J Cachexia Sarcopenia Muscle ; 13(1): 454-466, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35001540

RESUMEN

BACKGROUND: The role of Numb, a protein that is important for cell fate and development and that, in human muscle, is expressed at reduced levels with advanced age, was investigated; adult mice skeletal muscle and its localization and function within myofibres were determined. METHODS: Numb expression was evaluated by western blot. Numb localization was determined by confocal microscopy. The effects of conditional knock out (cKO) of Numb and the closely related gene Numb-like in skeletal muscle fibres were evaluated by in situ physiology, transmission and focused ion beam scanning electron microscopy, three-dimensional reconstruction of mitochondria, lipidomics, and bulk RNA sequencing. Additional studies using primary mouse myotubes investigated the effects of Numb knockdown on cell fusion, mitochondrial function, and calcium transients. RESULTS: Numb protein expression was reduced by ~70% (P < 0.01) at 24 as compared with 3 months of age in gastrocnemius and tibialis anterior muscle. Numb was localized within muscle fibres as bands traversing fibres at regularly spaced intervals in close proximity to dihydropyridine receptors. The cKO of Numb and Numb-like reduced specific tetanic force by 36% (P < 0.01), altered mitochondrial spatial relationships to sarcomeric structures, increased Z-line spacing by 30% (P < 0.0001), perturbed sarcoplasmic reticulum organization and reduced mitochondrial volume by over 80% (P < 0.01). Only six genes were differentially expressed in cKO mice: Itga4, Sema7a, Irgm2, Vezf1, Mib1, and Tmem132a. Several lipid mediators derived from polyunsaturated fatty acids through lipoxygenases were up-regulated in Numb cKO skeletal muscle: 12-HEPE was increased by ~250% (P < 0.05) and 17,18-EpETE by ~240% (P < 0.05). In mouse primary myotubes, Numb knockdown reduced cell fusion (~20%, P < 0.01) and delayed the caffeine-induced rise in cytosolic calcium concentrations by more than 100% (P < 0.01). CONCLUSIONS: These findings implicate Numb as a critical factor in skeletal muscle structure and function and suggest that Numb is critical for calcium release. We therefore speculate that Numb plays critical roles in excitation-contraction coupling, one of the putative targets of aged skeletal muscles. These findings provide new insights into the molecular underpinnings of the loss of muscle function observed with sarcopenia.


Asunto(s)
Proteínas de la Membrana , Músculo Esquelético , Proteínas del Tejido Nervioso , Retículo Sarcoplasmático , Animales , Calcio/metabolismo , Acoplamiento Excitación-Contracción , Técnicas de Inactivación de Genes , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Retículo Sarcoplasmático/metabolismo
3.
Sci Rep ; 7(1): 12888, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-29038428

RESUMEN

Exosomes are vesicles released by many eukaryotic cells; their cargo includes proteins, mRNA and microRNA (miR) that can be transferred to recipient cells and regulate cellular processes in an autocrine or paracrine manner. While cells of the myoblast lineage secrete exosomes, it is not known whether skeletal muscle fibers (myofibers) release exosomes. In this study, we found that cultured myofibers release nanovesicles that have bilamellar membranes and an average size of 60-130 nm, contain typical exosomal proteins and miRNAs and are taken up by C2C12 cells. miR-133a was found to be the most abundant myomiR in these vesicles while miR-720 was most enriched in exosomes compared to parent myofibers. Treatment of NIH 3T3 cells with myofiber-derived exosomes downregulated the miR-133a targets proteins Smarcd1 and Runx2, confirming that these exosomes have biologically relevant effects on recipient cells. Denervation resulted in a marked increase in miR-206 and reduced expression of miRs 1, 133a, and 133b in myofiber-derived exosomes. These findings demonstrate that skeletal muscle fibers release exosomes which can exert biologically significant effects on recipient cells, and that pathological muscle conditions such as denervation induce alterations in exosomal miR profile which could influence responses to disease states through autocrine or paracrine mechanisms.


Asunto(s)
Desnervación , Exosomas/metabolismo , MicroARNs/genética , Fibras Musculares Esqueléticas/metabolismo , Animales , Células Cultivadas , Proteínas Cromosómicas no Histona/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Regulación hacia Abajo/genética , Exosomas/ultraestructura , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Mioblastos/metabolismo , Células 3T3 NIH , Nanopartículas/química , Nanopartículas/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
PLoS One ; 11(12): e0166189, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27907012

RESUMEN

Spinal cord injury (SCI) results in muscle atrophy, reduced force generation and an oxidative-to-glycolytic fiber type shift. The mechanisms responsible for these alterations remain incompletely understood. To gain new insights regarding mechanisms involved in deterioration of muscle after SCI, global expression profiles of miRs in paralyzed gastrocnemius muscle were compared between sham-operated (Sham) and spinal cord-transected (SCI) rats. Ingenuity Pathways Analysis of the altered miRs identified signaling via insulin, IGF-1, integrins and TGF-ß as being significantly enriched for target genes. By qPCR, miRs 23a, 23b, 27b, 145, and 206, were downregulated in skeletal muscle 56 days after SCI. Using FISH, miR-145, a miR not previously implicated in the function of skeletal muscle, was found to be localized to skeletal muscle fibers. One predicted target of miR-145 was Cited2, a transcriptional regulator that modulates signaling through NF-κB, Smad3 and other transcription factors. The 3' UTR of Cited2 mRNA contained a highly conserved miR-145 seed sequence. Luciferase reporter assays confirmed that miR-145 interacts with this seed sequence. However, Cited2 protein levels were similar between Sham and SCI groups, indicating a biochemical interaction that was not involved in the context of adaptations after SCI. Taken together, the findings indicate dysregulation of several highly expressed miRs in skeletal muscle after SCI and suggest that reduced expression of miR-23a, 145 and 206 may have roles in alteration in skeletal muscle mass and insulin responsiveness in muscle paralyzed by upper motor neuron injuries.


Asunto(s)
MicroARNs/genética , Atrofia Muscular/genética , Traumatismos de la Médula Espinal/genética , Animales , Regulación de la Expresión Génica , Humanos , Insulina/metabolismo , Masculino , MicroARNs/biosíntesis , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/patología , Miostatina/metabolismo , ARN Mensajero/genética , Ratas , Transducción de Señal , Traumatismos de la Médula Espinal/patología
6.
J Bone Miner Res ; 30(11): 1994-2004, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25974843

RESUMEN

Unloading, neural lesions, and hormonal disorders after acute motor-complete spinal cord injury (SCI) cause one of the most severe forms of bone loss, a condition that has been refractory to available interventions tested to date. Thus, these features related to acute SCI provide a unique opportunity to study complex bone problems, potential efficacious interventions, and mechanisms of action that are associated with these dramatic pathological changes. This study was designed to explore the therapeutic potential of sclerostin antibody (Scl-Ab) in a rat model of bone loss after motor-complete SCI, and to investigate mechanisms underlying bone loss and Scl-Ab action. SCI rats were administered Scl-Ab (25 mg/kg/week) or vehicle beginning 7 days after injury then weekly for 7 weeks. SCI resulted in significant decreases in bone mineral density (-25%) and trabecular bone volume (-67%) at the distal femur; Scl-Ab completely prevented these deteriorations of bone in SCI rats, concurrent with markedly increased bone formation. Scanning electron microscopy revealed that SCI reduced numbers of osteocytes and dendrites concomitant with a morphology change from a spindle to round shape; Scl-Ab corrected these abnormalities in osteocytes. In ex vivo cultures of bone marrow cells, Scl-Ab inhibited osteoclastogenesis, and promoted osteoblastogenesis accompanied by increases in mRNA levels of LRP5, osteoprotegerin (OPG), and the OPG/RANKL ratio, and a decrease in DKK1 mRNA. Our findings provide the first evidence that robust bone loss after acute motor-complete SCI can be blocked by Scl-Ab, at least in part, through the preservation of osteocyte morphology and structure and related bone remodeling. Our findings support the inhibition of sclerostin as a promising approach to mitigate the striking bone loss that ensues after acute motor-complete SCI, and perhaps other conditions associated with disuse osteoporosis as a consequence of neurological disorders.


Asunto(s)
Anticuerpos/farmacología , Proteínas Morfogenéticas Óseas/inmunología , Fémur/patología , Marcadores Genéticos/inmunología , Osteocitos/patología , Traumatismos de la Médula Espinal/patología , Animales , Recuento de Células , Fémur/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Osteoclastos/patología , Osteocitos/efectos de los fármacos , Osteocitos/metabolismo , Osteogénesis/efectos de los fármacos , Ratas Wistar , Traumatismos de la Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...