Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(15): 7533-7542, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30898885

RESUMEN

Activation of the Met receptor tyrosine kinase, either by its ligand, hepatocyte growth factor (HGF), or via ligand-independent mechanisms, such as MET amplification or receptor overexpression, has been implicated in driving tumor proliferation, metastasis, and resistance to therapy. Clinical development of Met-targeted antibodies has been challenging, however, as bivalent antibodies exhibit agonistic properties, whereas monovalent antibodies lack potency and the capacity to down-regulate Met. Through computational modeling, we found that the potency of a monovalent antibody targeting Met could be dramatically improved by introducing a second binding site that recognizes an unrelated, highly expressed antigen on the tumor cell surface. Guided by this prediction, we engineered MM-131, a bispecific antibody that is monovalent for both Met and epithelial cell adhesion molecule (EpCAM). MM-131 is a purely antagonistic antibody that blocks ligand-dependent and ligand-independent Met signaling by inhibiting HGF binding to Met and inducing receptor down-regulation. Together, these mechanisms lead to inhibition of proliferation in Met-driven cancer cells, inhibition of HGF-mediated cancer cell migration, and inhibition of tumor growth in HGF-dependent and -independent mouse xenograft models. Consistent with its design, MM-131 is more potent in EpCAM-high cells than in EpCAM-low cells, and its potency decreases when EpCAM levels are reduced by RNAi. Evaluation of Met, EpCAM, and HGF levels in human tumor samples reveals that EpCAM is expressed at high levels in a wide range of Met-positive tumor types, suggesting a broad opportunity for clinical development of MM-131.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Antineoplásicos Inmunológicos/farmacología , Molécula de Adhesión Celular Epitelial/antagonistas & inhibidores , Factor de Crecimiento de Hepatocito/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular Tumoral , Molécula de Adhesión Celular Epitelial/metabolismo , Humanos , Ratones , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Proteínas Proto-Oncogénicas c-met/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Methods ; 65(1): 95-104, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23872324

RESUMEN

Antibodies are essential components of the adaptive immune system that provide protection from extracellular pathogens and aberrant cells in the host. Immunoglobulins G, which have been adapted for therapeutic use due to their exquisite specificity of target recognition, are bivalent homodimers composed of two antigen binding Fab arms and an immune cell recruiting Fc module. In recent years significant progress has been made in optimizing properties of both Fab and Fc components to derive antibodies with improved affinity, stability, and effector function. However, systematic analyses of the efficiency with which antibodies crosslink their targets have lagged, despite the well-recognized importance of this cross-arm binding for optimal antigen engagement. Such an understanding is particularly relevant given the variety of next-generation multispecific antibody scaffolds under development. In this manuscript we attempt to fill this gap by presenting a framework for analysis and optimization of antibody cross-arm engagement. We illustrate the power of this integrated approach by presenting case studies for rational multispecific antibody design based on quantitative assessment of the interplay between antibody valency, target expression, and cross-arm binding efficiency. We conclude that optimal design parameters for cross-arm binding strongly depend on the biological context of the disease, and that cross-arm binding efficiency needs to be considered for successful application of multispecific antibodies.


Asunto(s)
Anticuerpos Biespecíficos/química , Anticuerpos Monoclonales/química , Animales , Anticuerpos Biespecíficos/farmacología , Anticuerpos Monoclonales/farmacología , Especificidad de Anticuerpos , Línea Celular , Humanos , Inmunoglobulina G/química , Concentración 50 Inhibidora , Unión Proteica , Ingeniería de Proteínas , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inhibidores , Receptor ErbB-3/inmunología , Receptor ErbB-3/metabolismo , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/metabolismo
3.
Mol Cancer Ther ; 13(2): 410-25, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24282274

RESUMEN

Although inhibition of the insulin-like growth factor (IGF) signaling pathway was expected to eliminate a key resistance mechanism for EGF receptor (EGFR)-driven cancers, the effectiveness of IGF-I receptor (IGF-IR) inhibitors in clinical trials has been limited. A multiplicity of survival mechanisms are available to cancer cells. Both IGF-IR and the ErbB3 receptor activate the PI3K/AKT/mTOR axis, but ErbB3 has only recently been pursued as a therapeutic target. We show that coactivation of the ErbB3 pathway is prevalent in a majority of cell lines responsive to IGF ligands and antagonizes IGF-IR-mediated growth inhibition. Blockade of the redundant IGF-IR and ErbB3 survival pathways and downstream resistance mechanisms was achieved with MM-141, a tetravalent bispecific antibody antagonist of IGF-IR and ErbB3. MM-141 potency was superior to monospecific and combination antibody therapies and was insensitive to variation in the ratio of IGF-IR and ErbB3 receptors. MM-141 enhanced the biologic impact of receptor inhibition in vivo as a monotherapy and in combination with the mTOR inhibitor everolimus, gemcitabine, or docetaxel, through blockade of IGF-IR and ErbB3 signaling and prevention of PI3K/AKT/mTOR network adaptation.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Proliferación Celular/efectos de los fármacos , Receptor ErbB-3/antagonistas & inhibidores , Receptor IGF Tipo 1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Anticuerpos Biespecíficos/administración & dosificación , Anticuerpos Biespecíficos/inmunología , Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Western Blotting , Línea Celular Tumoral , Desoxicitidina/administración & dosificación , Desoxicitidina/análogos & derivados , Docetaxel , Everolimus , Femenino , Humanos , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-3/inmunología , Receptor IGF Tipo 1/inmunología , Sirolimus/administración & dosificación , Sirolimus/análogos & derivados , Serina-Treonina Quinasas TOR/metabolismo , Taxoides/administración & dosificación , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
4.
PLoS One ; 8(9): e74335, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098642

RESUMEN

Due to the high complexity of biological data it is difficult to disentangle cellular processes relying only on intuitive interpretation of measurements. A Systems Biology approach that combines quantitative experimental data with dynamic mathematical modeling promises to yield deeper insights into these processes. Nevertheless, with growing complexity and increasing amount of quantitative experimental data, building realistic and reliable mathematical models can become a challenging task: the quality of experimental data has to be assessed objectively, unknown model parameters need to be estimated from the experimental data, and numerical calculations need to be precise and efficient. Here, we discuss, compare and characterize the performance of computational methods throughout the process of quantitative dynamic modeling using two previously established examples, for which quantitative, dose- and time-resolved experimental data are available. In particular, we present an approach that allows to determine the quality of experimental data in an efficient, objective and automated manner. Using this approach data generated by different measurement techniques and even in single replicates can be reliably used for mathematical modeling. For the estimation of unknown model parameters, the performance of different optimization algorithms was compared systematically. Our results show that deterministic derivative-based optimization employing the sensitivity equations in combination with a multi-start strategy based on latin hypercube sampling outperforms the other methods by orders of magnitude in accuracy and speed. Finally, we investigated transformations that yield a more efficient parameterization of the model and therefore lead to a further enhancement in optimization performance. We provide a freely available open source software package that implements the algorithms and examples compared here.


Asunto(s)
Algoritmos , Fenómenos Fisiológicos Celulares/fisiología , Modelos Biológicos , Programas Informáticos , Biología de Sistemas/métodos
5.
Mol Cancer Ther ; 11(7): 1467-76, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22564724

RESUMEN

Aberrant expression and activation of EGF receptor (EGFR) has been implicated in the development and progression of many human cancers. As such, targeted therapeutic inhibition of EGFR, for example by antibodies, is a promising anticancer strategy. The overall efficacy of antibody therapies results from the complex interplay between affinity, valence, tumor penetration and retention, and signaling inhibition. To gain better insight into this relationship, we studied a panel of EGFR single-chain Fv (scFv) antibodies that recognize an identical epitope on EGFR but bind with intrinsic monovalent affinities varying by 280-fold. The scFv were converted to Fab and IgG formats, and investigated for their ability to bind EGFR, compete with EGF binding, and inhibit EGF-mediated downstream signaling and proliferation. We observed that the apparent EGFR-binding affinity for bivalent IgG plateaus at intermediate values of intrinsic affinity of the cognate Fab, leading to a biphasic curve describing the ratio of IgG to Fab affinity. Mathematical modeling of antibody-receptor binding indicated that the biphasic effect results from nonequilibrium assay limitations. This was confirmed by further observation that the potency of EGF competition for antibody binding to EGFR improved with both intrinsic affinity and antibody valence. Similarly, both higher intrinsic affinity and bivalent binding improved the potency of antibodies in blocking cellular signaling and proliferation. Overall, our work indicates that higher intrinsic affinity combined with bivalent binding can achieve avidity that leads to greater in vitro potency of antibodies, which may translate into greater therapeutic efficacy.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Afinidad de Anticuerpos/inmunología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/inmunología , Anticuerpos Monoclonales/farmacología , Afinidad de Anticuerpos/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/genética , Expresión Génica , Humanos , Neoplasias/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/inmunología
6.
Methods Enzymol ; 502: 67-87, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22208982

RESUMEN

Monoclonal antibodies are valuable as anticancer therapeutics because of their ability to selectively bind tumor-associated target proteins like receptor tyrosine kinases. Kinetic computational models that capture protein-protein interactions using mass action kinetics are a valuable tool for understanding the binding properties of monoclonal antibodies to their targets. Insights from the models can be used to explore different formats, to set antibody design specifications such as affinity and valence, and to predict potency. Antibody binding to target is driven by both intrinsic monovalent affinity and bivalent avidity. In this chapter, we describe a combined experimental and computational method of assessing the relative importance of these effects on observed drug potency. The method, which we call virtual flow cytometry (VFC), merges experimental measurements of monovalent antibody binding kinetics and affinity curves of antibody-antigen binding into a kinetic computational model of antibody-antigen interaction. The VFC method introduces a parameter χ, the avidity factor, which characterizes the ability of an antibody to cross-link its target through bivalent binding. This simple parameterization of antibody cross-linking allows the model to successfully describe and predict antibody binding curves across a wide variety of experimental conditions, including variations in target expression level and incubation time of antibody with target. We further demonstrate how computational models of antibody binding to cells can be used to predict target inhibition potency. Importantly, we demonstrate computationally that antibodies with high ability to cross-link antigen have significant potency advantages. We also present data suggesting that the parameter χ is a physical, epitope-dependent property of an antibody, and as a result propose that determination of antibody cross-linking and avidity should be incorporated into the screening of antibody panels for therapeutic development. Overall, our results suggest that antibody cross-linking, in addition to monovalent binding affinity, is a key design parameter of antibody performance.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Antígenos/metabolismo , Simulación por Computador , Citometría de Flujo/métodos , Ingeniería de Proteínas/métodos , Receptores de Superficie Celular/metabolismo , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Afinidad de Anticuerpos , Antígenos/inmunología , Sitios de Unión de Anticuerpos , Epítopos/inmunología , Epítopos/metabolismo , Humanos , Cinética , Terapia Molecular Dirigida , Unión Proteica , Receptores de Superficie Celular/inmunología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Proyectos de Investigación
7.
Mol Cancer Ther ; 11(3): 582-93, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22248472

RESUMEN

The prevalence of ErbB2 amplification in breast cancer has resulted in the heavy pursuit of ErbB2 as a therapeutic target. Although both the ErbB2 monoclonal antibody trastuzumab and ErbB1/ErbB2 dual kinase inhibitor lapatinib have met with success in the clinic, many patients fail to benefit. In addition, the majority of patients who initially respond will unfortunately ultimately progress on these therapies. Activation of ErbB3, the preferred dimerization partner of ErbB2, plays a key role in driving ErbB2-amplified tumor growth, but we have found that current ErbB2-directed therapies are poor inhibitors of ligand-induced activation. By simulating ErbB3 inhibition in a computational model of ErbB2/ErbB3 receptor signaling, we predicted that a bispecific antibody that docks onto ErbB2 and subsequently binds to ErbB3 and blocks ligand-induced receptor activation would be highly effective in ErbB2-amplified tumors, with superior activity to a monospecific ErbB3 inhibitor. We have developed a bispecific antibody suitable for both large scale production and systemic therapy by generating a single polypeptide fusion protein of two human scFv antibodies linked to modified human serum albumin. The resulting molecule, MM-111, forms a trimeric complex with ErbB2 and ErbB3, effectively inhibiting ErbB3 signaling and showing antitumor activity in preclinical models that is dependent on ErbB2 overexpression. MM-111 can be rationally combined with trastuzumab or lapatinib for increased antitumor activity and may in the future complement existing ErbB2-directed therapies to treat resistant tumors or deter relapse.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Neoplasias/tratamiento farmacológico , Neurregulina-1/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-3/antagonistas & inhibidores , Animales , Anticuerpos Biespecíficos/metabolismo , Anticuerpos Biespecíficos/farmacocinética , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclina D1/metabolismo , Diseño de Fármacos , Femenino , Humanos , Concentración 50 Inhibidora , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Complejos Multiproteicos/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Cancer Res ; 70(1): 12-3, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20028868

RESUMEN

Systems biology takes an interdisciplinary approach to the systematic study of complex interactions in biological systems. This approach seeks to decipher the emergent behaviors of complex systems rather than focusing only on their constituent properties. As an increasing number of examples illustrate the value of systems biology approaches to understand the initiation, progression, and treatment of cancer, systems biologists from across Europe and the United States hope for changes in the way their field is currently perceived among cancer researchers. In a recent EU-US workshop, supported by the European Commission, the German Federal Ministry for Education and Research, and the National Cancer Institute of the NIH, the participants discussed the strengths, weaknesses, hurdles, and opportunities in cancer systems biology.


Asunto(s)
Investigación Biomédica/tendencias , Neoplasias , Biología de Sistemas , Animales , Humanos
9.
Sci Signal ; 2(77): ra31, 2009 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-19567914

RESUMEN

The signaling network downstream of the ErbB family of receptors has been extensively targeted by cancer therapeutics; however, understanding the relative importance of the different components of the ErbB network is nontrivial. To explore the optimal way to therapeutically inhibit combinatorial, ligand-induced activation of the ErbB-phosphatidylinositol 3-kinase (PI3K) axis, we built a computational model of the ErbB signaling network that describes the most effective ErbB ligands, as well as known and previously unidentified ErbB inhibitors. Sensitivity analysis identified ErbB3 as the key node in response to ligands that can bind either ErbB3 or EGFR (epidermal growth factor receptor). We describe MM-121, a human monoclonal antibody that halts the growth of tumor xenografts in mice and, consistent with model-simulated inhibitor data, potently inhibits ErbB3 phosphorylation in a manner distinct from that of other ErbB-targeted therapies. MM-121, a previously unidentified anticancer therapeutic designed using a systems approach, promises to benefit patients with combinatorial, ligand-induced activation of the ErbB signaling network that are not effectively treated by current therapies targeting overexpressed or mutated oncogenes.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Receptor ErbB-3/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales Humanizados , Receptores ErbB/metabolismo , Humanos , Ligandos , Ratones , Fosforilación , Unión Proteica , Receptor ErbB-3/inmunología , Transducción de Señal , Trasplante Heterólogo
10.
Biophys J ; 88(2): 1479-88, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15713602

RESUMEN

Migrating cells can sustain a relatively constant direction of lamellipodial protrusion and locomotion over timescales ranging from minutes to hours. However, individual waves of lamellipodial extension occur over much shorter characteristic times. Little understanding exists regarding how cells might integrate biophysical processes across these disparate timescales to control the directional persistence of locomotion. We address this issue by examining the effects of epidermal growth factor (EGF) stimulation on long-timescale directional persistence and short-timescale lamellipodial dynamics of EGF receptor-transfected Chinese hamster ovary cells migrating on fibronectin-coated substrata. Addition of EGF increased persistence, with the magnitude of increase correlating with fibronectin coating concentration. Kymographic analysis of EGF-stimulated lamellipodial dynamics revealed that the temporal stability of lamellipodial protrusions similarly increased with fibronectin concentration. A soluble RGD peptide competitor reduced both the persistence of long-timescale cell paths and the stability of short-timescale membrane protrusions, indicating that cell-substratum adhesion concomitantly influences lamellipodial dynamics and directional persistence. These results reveal the importance of adhesion strength in regulating the directional motility of cells and suggest that the short-timescale kinetics of adhesion complex formation may play a key role in modulating directional persistence over much longer timescales.


Asunto(s)
Adhesión Celular/fisiología , Movimiento Celular/fisiología , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/metabolismo , Fibronectinas/farmacología , Seudópodos/fisiología , Seudópodos/ultraestructura , Animales , Células CHO , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Receptores ErbB/genética , Oligopéptidos , Seudópodos/efectos de los fármacos , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...