Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Med (Lond) ; 4(1): 113, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867000

RESUMEN

BACKGROUND: Optimizing resuscitation to reduce inflammation and organ dysfunction following human trauma-associated hemorrhagic shock is a major clinical hurdle. This is limited by the short duration of pre-clinical studies and the sparsity of early data in the clinical setting. METHODS: We sought to bridge this gap by linking preclinical data in a porcine model with clinical data from patients from the Prospective, Observational, Multicenter, Major Trauma Transfusion (PROMMTT) study via a three-compartment ordinary differential equation model of inflammation and coagulation. RESULTS: The mathematical model accurately predicts physiologic, inflammatory, and laboratory measures in both the porcine model and patients, as well as the outcome and time of death in the PROMMTT cohort. Model simulation suggests that resuscitation with plasma and red blood cells outperformed resuscitation with crystalloid or plasma alone, and that earlier plasma resuscitation reduced injury severity and increased survival time. CONCLUSIONS: This workflow may serve as a translational bridge from pre-clinical to clinical studies in trauma-associated hemorrhagic shock and other complex disease settings.


Research to improve survival in patients with severe bleeding after major trauma presents many challenges. Here, we created a computer model to simulate the effects of severe bleeding. We refined this model using data from existing animal studies to ensure our simulations were accurate. We also used patient data to further refine the simulations to accurately predict which patients would live and which would not. We studied the effects of different treatment protocols on these simulated patients and show that treatment with plasma (the fluid portion of blood that helps form blood clots) and red blood cells jointly, gave better results than treatment with intravenous fluid or plasma alone. Early treatment with plasma reduced injury severity and increased survival time. This modelling approach may improve our ability to evaluate new treatments for trauma-associated bleeding and other acute conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...