Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Environ Pollut ; 355: 124259, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38810680

RESUMEN

The global increase in electronic waste (e-waste) has led to a rise in informal recycling, emitting hazardous heavy metals (HMs) that threaten human health and ecosystems. This study presents the first comprehensive assessment of HM levels in dry deposition and soils at proximity of forty (40) informal e-waste recycling sites across Pakistan, between September 2020 to December 2021. Findings reveal that Zn (1410), Pb (410) and Mn (231) exhibited the higher mean deposition fluxes (µg/m2.day), derived from air samples, particularly in Karachi. Similarly, soils showed higher mean concentrations (µg/g dw) of Mn (477), Cu (514) and Pb (172) in Faisalabad, Lahore, and Karachi, respectively. HMs concentrations were found higher in winter or autumn and lower in summer. In addition, HM levels were significantly (p = 0.05) higher at recycling sites compared to background sites year-round, highlighting the e-waste recycling operations as the major source of their emissions. The Igeo index indicated moderate to extremely contaminated levels of Cu, Pb, Cd, and Ni in Karachi, Lahore and Gujranwala. Ingestion was found as a leading human exposure route, followed by dermal and inhalation exposure, with Pb posing the greatest health risk. The Cumulative Incremental Lifetime Cancer Risk (ILCR) model suggested moderate to low cancer risks for workers. Strategic interventions recommend mitigating health and environmental risks, prioritizing human health and ecosystem integrity in Pakistan's e-waste management.


Asunto(s)
Ciudades , Residuos Electrónicos , Metales Pesados , Reciclaje , Contaminantes del Suelo , Pakistán , Humanos , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Suelo/química , Monitoreo del Ambiente , Contaminantes Atmosféricos/análisis , Medición de Riesgo
2.
Chemosphere ; 351: 141257, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244871

RESUMEN

Airborne polycyclic aromatic hydrocarbons (PAHs) and their derivatives are of particular concern for population health due to their abundance and toxicity via inhalation. Lung toxicity testing includes exposing lung epithelial cell lines to PAHs in a culture medium containing inorganic species, lipids, proteins, and other biochemicals where the cell response is influenced among others by the toxic chemical accessibility in the medium. While inhalation bioaccessibility of PAHs and other toxicants was previously studied in surrogate lung fluids, studies measuring bioaccessibility in cell culture media are rare. In this work, a method was developed to characterize PAH bioaccessibility in a culture medium used for mouse lung epithelial (FE1) cells. Further, the optimised method was tested using commercially available standard reference material of urban particulate matter (PM) as well as polyurethane foam passive air samplers (PUF-PAS). The method provided a high precision and recovery of analytes, indicating no losses during sample processing and analysis. PAHs had non-linear concentration-responses, with the culture medium approaching saturation with PM concentration of 500 µg mL-1. The results showed that phenanthrene, a 3-ring PAH, was significantly more bioaccessible than ≥4-ring congeners in the culture medium (up to ∼2.5 folds; p < 0.05). Finally, using pre-deployed PUF-PAS from a residential and an industrial site, five PAHs were found in the culture medium, including naphthalene, phenanthrene, anthracene, fluoranthene, and pyrene. This work provides a proof of concept to enable future studies to assess the inhalation bioaccessibility of polycyclic aromatic compounds and other airborne pollutants collected using PUF-PAS.


Asunto(s)
Contaminantes Atmosféricos , Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Compuestos Policíclicos , Animales , Ratones , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Fenantrenos/análisis , Compuestos Policíclicos/análisis , Técnicas de Cultivo de Célula , Monitoreo del Ambiente/métodos
3.
Chemosphere ; 345: 140423, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839749

RESUMEN

A mapping study targeting emissions of polycyclic aromatic compounds (PACs) from an oil sands tailings pond was undertaken in the Athabasca Oil sands Region (AOSR). Ten passive air samplers comprising polyurethane foam (PUF) disks were deployed around the perimeter of Suncor Tailings Pond 2/3 for a five-week period to generate time-integrated concentrations in air for PACs, which included ∑unsubstituted polycyclic aromatic hydrocarbons (PAHs), ∑alkylated PAHs (alk-PAHs), and ∑dibenzothiophenes (DBTs) (both unsubstituted and alkylated). Concentrations in air ranged from 13 to 70, 220-970, and 30-210 ng/m3, respectively, and were elevated in samplers downwind of the tailings pond. PAC emissions to air from the pond were estimated using only the air-side concentration information by applying a simplified Gaussian dispersion model and found to be 896 µg/m2/day. ∑alk-PAHs and ∑DBTs had the highest contribution to the total PAC fluxes (79% and 16%, respectively). This flux estimate for PACs is equivalent to 460 kg on an annual basis and 35 000 kg/year when scaled to represent all tailings ponds in the region. The results generally agree with fluxes estimated from coupled high volume air sampling data and tailings pond water concentrations from the same field study but which are complicated due to uncertainties associated with the use of pure water Henry's Law values for tailings pond water as well as the potential for surface oily films on the tailings ponds to impact water-air exchange of PACs. Overall, these findings support the use of relatively simple and electricity-free PUF disk samplers for mapping and estimating emissions from area sources such as tailings ponds, using only air-side concentration information.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Compuestos Policíclicos , Yacimiento de Petróleo y Gas , Estanques , Hidrocarburos Policíclicos Aromáticos/análisis , Agua , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Alberta
4.
ACS Omega ; 8(39): 36016-36024, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37810729

RESUMEN

Given the considerable financial and logistical resources supporting long-term monitoring for air pollutants, and the use of these data for performance evaluation of mitigation measures, it is important to account for contributions from primary versus secondary sources. We demonstrate a simple approach for using open source Global land cover raster data from the National Mapping Organization from the Geospatial Information Authority of Japan to assess local source inputs for air measurements of legacy persistent organic pollutants (POPs)-polychlorinated biphenyls (PCBs) and organochlorine pesticides-reported under the Global atmospheric passive sampling (GAPS) Network at 119 locations for the time period 2005-2014. The land cover composition within a 10 km radius around the GAPS sites was identified to create source impact indicator (SII) vectors to quantify and rank the remoteness of the sites from human infrastructure. Using principal component analysis, three SII vectors were established to rank sites by impact of (i) general infrastructure/remoteness, (ii) urban infrastructure, and (iii) agricultural infrastructure. General infrastructure describes the combined effects of settlements and agricultural infrastructure. We found significant correlations (p < 0.05) between POP concentrations in air and specific SIIs. PCB levels in air had a statistically significant correlation to the SII ranking urban impacts around the sampling sites, while Endosulfan I, Endosulfan II, and Endosulfan sulfate had a statistically significant correlation with SII ranking agricultural impacts. The complete GAPS data set from 2004-2014 (1040 samples at 119 locations) was standardized based on the SII rankings to assess the global temporal trends of legacy POPs. SIIs were incorporated in the multiple regression analysis to determine global halving times. This includes short-term monitoring data from 79 locations that were previously excluded. Furthermore, the SII approach allows the integration of global monitoring data from different studies for broader global temporal trend analysis. This ability to link the results of independent and small-scale studies can enhance temporal trend analysis in support of the larger scale initiatives, such as inter alia, the Global Monitoring Plan and Effectiveness Evaluation of the Stockholm Convention in the case of POPs. This simple approach using open source data has a broad potential for application for other classes of air pollutants.

5.
Environ Sci Technol ; 57(39): 14661-14673, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37732724

RESUMEN

Trace metals, as constituents of ambient air, can have impacts on human and environmental health. The Global Atmospheric Passive Sampling (GAPS) and GAPS Megacities (GAPS-MC) networks investigated trace metals in the air at 51 global locations by deploying polyurethane foam disk passive air samplers (PUF-PAS) for periods of 3-12 months. Aluminum and iron exhibited the highest concentrations in air (x̅ = 3400 and 4630 ng/m3, respectively), with notably elevated values at a rural site in Argentina thought to be impacted by resuspended soil. Urban sites had the highest levels of toxic Pb and Cd, with enrichment factors suggesting primarily anthropogenic influences. High levels of As at rural sites were also observed. Elevated trace metal concentrations in cities are associated with local emissions and higher PM2.5 and PM10 concentrations. Brake and tire wear-associated metals Sb, Cu, and Zn are significantly correlated and elevated at urban locations relative to those at background sites. These data demonstrate the versatility of PUF-PAS for measuring trace metals and other particle-associated pollutants in ambient air in a cost-effective and simple manner. The data presented here will serve as a global baseline for assessing future changes in ambient air associated with industrialization, urbanization, and population growth.

6.
Environ Sci Technol ; 57(34): 12806-12818, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37590934

RESUMEN

We investigated the trophic magnification potential of perfluoroalkyl substances (PFAS) in a terrestrial food web by using a chemical activity-based approach, which involved normalizing concentrations of PFAS in biota to their relative biochemical composition in order to provide a thermodynamically accurate basis for comparing concentrations of PFAS in biota. Samples of hawk eggs, songbird tissues, and invertebrates were collected and analyzed for concentrations of 18 perfluoroalkyl acids (PFAAs) and for polar lipid, neutral lipid, total protein, albumin, and water content. Estimated mass fractions of PFCA C8-C11 and PFSA C4-C8 predominantly occurred in albumin within biota samples from the food web with smaller estimated fractions in polar lipids > structural proteins > neutral lipids and insignificant amounts in water. Estimated mass fractions of longer-chained PFAS (i.e., C12-C16) mainly occurred in polar lipids with smaller estimated fractions in albumin > structural proteins > neutral lipids > and water. Chemical activity-based TMFs indicated that PFNA, PFDA, PFUdA, PFDoA, PFTrDA, PFTeDA, PFOS, and PFDS biomagnified in the food web; PFOA, PFHxDA, and PFHxS did not appear to biomagnify; and PFBS biodiluted. Chemical activity-based TMFs for PFCA C8-C11 and PFSA C4-C8 were in good agreement with corresponding TMFs derived with concentrations normalized to only total protein in biota, suggesting that concentrations normalized to total protein may be appropriate proxies of chemical activity-based TMFs for PFAS, which predominantly partition to albumin. Similarly, TMFs derived with concentrations normalized to albumin may be suitable proxies of chemical activity-based TMFs for longer-chained PFAS, which predominantly partition to polar lipids.


Asunto(s)
Fluorocarburos , Cadena Alimentaria , Animales , Aves , Albúminas , Agua , Lípidos
7.
Environ Pollut ; 323: 121291, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796663

RESUMEN

The study reports on the atmospheric concentrations of per- and polyfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) measured using sorbent-impregnated polyurethane foam disks (SIPs) passive air samplers. New results are reported for samples collected in 2017, which extends temporal trend information to the period 2009-2017, for 21 sites where SIPs have been deployed since 2009. Among neutral PFAS, fluorotelomer alcohols (FTOHs) had higher concentrations than perfluoroalkane sulfonamides (FOSAs) and perfluoroalkane sulfonamido ethanols (FOSEs) with levels of ND‒228, ND‒15.8, ND‒10.4 pg/m3, respectively. Among ionizable PFAS, the sum of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in air were 0.128-781 and 6.85-124 pg/m3, respectively. Longer-chain i.e. C9-C14 PFAS, which are relevant to the recent proposal by Canada for a listing of long-chain (C9-C21) PFCAs to the Stockholm Convention, were also detected in the environment at all site categories including Arctic sites. Cyclic and linear VMS ranged between 1.34‒452 and 0.01-12.1 ng/m3, respectively, showing dominance in urban areas. Despite the wide range of levels observed across different site categories, geometric means of the PFAS and VMS groups were fairly similar when grouped according to the five United Nations regions. Variable temporal trends in air (2009-2017) were observed for both PFAS and VMS. PFOS, which has been listed in the Stockholm Convention since 2009, is still showing increasing tendencies at several sites, indicating constant input from direct and/or indirect sources. These new data inform international chemicals management for PFAS and VMS.


Asunto(s)
Contaminantes Atmosféricos , Fluorocarburos , Fluorocarburos/análisis , Monitoreo del Ambiente/métodos , Siloxanos/análisis , Contaminantes Atmosféricos/análisis , Ácidos Carboxílicos
8.
Environ Pollut ; 314: 120206, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36152723

RESUMEN

Pollution from vehicle tires has received world-wide research attention due to its ubiquity and toxicity. In this study, we measured various tire-derived contaminants semi-quantitatively in archived extracts of passive air samplers deployed in 18 major cities that comprise the Global Atmospheric Passive Sampling (GAPS) Network (GAPS-Megacities). Analysis was done on archived samples, which represent one-time weighted passive air samples from each of the 18 monitoring sites. The target analytes included cyclic amines, benzotriazoles, benzothiazoles, and p-phenylenediamine (PPD) derivatives. Of the analyzed tire-derived contaminants, diphenylguanidine was the most frequently detected analyte across the globe, with estimated concentrations ranging from 45.0 pg/m3 in Beijing, China to 199 pg/m3 in Kolkata, India. The estimated concentrations of 6PPD-quinone and total benzothiazoles (including benzothiazole, 2-methylthio-benzothiazole, 2-methyl-benzothiazole, 2-hydroxy-benzothiazole) peaked in the Latin American and the Caribbean region at 1 pg/m3 and 100 pg/m3, respectively. In addition, other known tire-derived compounds, such as hexa(methoxymethyl)melamine, phenylguanidine, and various transformation products of 6PPD, were also monitored and characterized semi-quantitatively or qualitatively. This study presents some of the earliest data on airborne concentrations of chemicals associated with tire-wear and shows that passive sampling is a viable techniquefor monitoring airborne tire-wear contamination. Due to the presence of many tire-derived contaminants in urban air across the globe as highlighted by this study, there is a need to determine the associated exposure and toxicity of these chemicals to humans.


Asunto(s)
Contaminantes Atmosféricos , Humanos , Contaminantes Atmosféricos/análisis , Ciudades , Monitoreo del Ambiente , Benzotiazoles/análisis , Quinonas/análisis , Aminas/análisis
9.
Sci Total Environ ; 843: 157094, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35779735

RESUMEN

Chlorinated paraffins (CPs) are synthetic chemicals that are produced at high volumes and have a global presence. CPs are generally divided into three groups based on their carbon chain lengths: short-chain CPs (SCCPs, C10-13), medium-chain CPs (MCCPs, C14-17), and long-chain CPs (LCCPs, C≥18). SCCPs have been formally recognized as persistent organic pollutants (POPs) and have been listed under the Stockholm Convention on POPs. Concerns about increases in MCCP and LCCP production as replacements for SCCP products are rising, given their similar properties to SCCPs and the fact that they remain relatively understudied with only a few reported measurements in air. Passive air samplers with polyurethane foam disks (PUF-PAS), which have been successfully applied to SCCPs, provide an opportunity to expand the existing body of data on MCCP and LCCP air concentrations, as they are inexpensive and require little maintenance. The uptake of MCCPs and LCCPs by PUF disk samplers is characterized in this paper based on newly derived PUF-air partitioning coefficients using COSMOtherm. The ability of PUF disk samplers to capture both gas-phase and particle fractions is important because MCCPs and LCCPs have reduced volatility compared to SCCPs and therefore are mainly associated with particulate matter in air. In addition, due to their use as additives in plastics and rubber products, they are associated with micro- and nanoplastics, which are considered to be potential vectors for the long-range atmospheric transport (LRAT) of these chemicals. The review has highlighted other limitations to reporting of MCCPs and LCCPs in air, including the lack of suitable analytical standards and the requirement for advanced analytical methods to detect and resolve these complex mixtures. Overall, this review indicates that further research is needed in many areas for medium- and long-chain chlorinated paraffins in order to better understand their occurrence, transport and fate in air.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Clorados , China , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Hidrocarburos Clorados/análisis , Parafina/análisis , Material Particulado
10.
Chemosphere ; 299: 134323, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35302004

RESUMEN

Carbonaceous aerosol species, such as elemental carbon (EC), are important Short-Lived Climate Forcers (SLCFs), contributing to climate and health effects of air pollution. The quantification of carbonaceous aerosols has been conventionally carried out using active air sampling followed by various analytical techniques, such as thermal/thermal-optical analysis. Active sampling requires specific equipment and infrastructure with electricity and therefore may not be the best choice for studying carbonaceous aerosols at remote locations. Passive sampling on the other hand provides a simple and cost-effective alternative to study time-weighted temporal and spatial trends. For the first time in this study, we have developed a method to examine the viability of measuring EC using polyurethane foam passive air samplers (PUF-PAS) coupled with a thermal analysis, i.e., EnCan-Total-900 (ECT9). The method was found reproducible with coefficients of variation as low as 3% for EC measured in ambient passive samples. The method had relatively low background with EC levels in blanks being as low as 0.1% of those in deployed samples, allowing quantification within a wide range of concentrations. The results indicate a homogenous distribution of particles within the PUF-PAS substrate. EC concentrations measured with the passive method were not significantly different from those obtained from active samples at the study sites (p > 0.01). This proof of concept of the PUF-PAS method provides an opportunity to cost-effectively expand measurements of elemental carbon at the global scale, and could be further extended to include other carbonaceous aerosol species in the future. This helps address regional data gaps for improving uncertainties of SLCF impacts on global climate forcing and to inform policy decisions.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Carbono/análisis , Monitoreo del Ambiente/métodos , Poliuretanos/química
11.
Environ Sci Technol ; 56(5): 2936-2949, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35167273

RESUMEN

The Stockholm Convention is key to addressing the global threats of persistent organic pollutants (POPs) to humanity and the environment. It has been successful in identifying new POPs, but its national implementation remains challenging, particularly by low- and middle-income Parties. Concerted action is needed to assist Parties in implementing the Convention's obligations. This analysis aims to identify and recommend research and scientific support needed for timely implementation of the Convention. We aim this analysis at scientists and experts from a variety of natural and social sciences and from all sectors (academia, civil society, industry, and government institutions), as well as research funding agencies. Further, we provide practical guidance to scientists and experts to promote the visibility and accessibility of their work for the Convention's implementation, followed by recommendations for sustaining scientific support to the Convention. This study is the first of a series on analyzing policy needs for scientific evidence under global governance on chemicals and waste.


Asunto(s)
Contaminantes Ambientales , Contaminantes Ambientales/análisis , Políticas
12.
Nature ; 600(7889): 456-461, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34912090

RESUMEN

Commercial chemicals are used extensively across urban centres worldwide1, posing a potential exposure risk to 4.2 billion people2. Harmful chemicals are often assessed on the basis of their environmental persistence, accumulation in biological organisms and toxic properties, under international and national initiatives such as the Stockholm Convention3. However, existing regulatory frameworks rely largely upon knowledge of the properties of the parent chemicals, with minimal consideration given to the products of their transformation in the atmosphere. This is mainly due to a dearth of experimental data, as identifying transformation products in complex mixtures of airborne chemicals is an immense analytical challenge4. Here we develop a new framework-combining laboratory and field experiments, advanced techniques for screening suspect chemicals, and in silico modelling-to assess the risks of airborne chemicals, while accounting for atmospheric chemical reactions. By applying this framework to organophosphate flame retardants, as representative chemicals of emerging concern5, we find that their transformation products are globally distributed across 18 megacities, representing a previously unrecognized exposure risk for the world's urban populations. More importantly, individual transformation products can be more toxic and up to an order-of-magnitude more persistent than the parent chemicals, such that the overall risks associated with the mixture of transformation products are also higher than those of the parent flame retardants. Together our results highlight the need to consider atmospheric transformations when assessing the risks of commercial chemicals.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Atmósfera/química , Monitoreo del Ambiente , Retardadores de Llama/efectos adversos , Sustancias Peligrosas/análisis , Internacionalidad , Organofosfatos/efectos adversos , Aire/análisis , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/envenenamiento , Animales , Bioacumulación , Ciudades/estadística & datos numéricos , Simulación por Computador , Ecosistema , Retardadores de Llama/análisis , Retardadores de Llama/envenenamiento , Sustancias Peligrosas/efectos adversos , Sustancias Peligrosas/química , Sustancias Peligrosas/envenenamiento , Humanos , Intoxicación por Organofosfatos , Organofosfatos/análisis , Organofosfatos/química , Medición de Riesgo
13.
Toxics ; 9(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34941758

RESUMEN

Assessing complex environmental mixtures and their effects is challenging. In this study, we evaluate the utility of an avian in vitro screening approach to determine the effects of passive air sampler extracts collected from different global megacities on cytotoxicity and gene expression. Concentrations of a suite of organic flame retardants (OFRs) were quantified in extracts from a total of 19 megacities/major cities in an earlier study, and levels were highly variable across sites. Chicken embryonic hepatocytes were exposed to serial dilutions of extracts from the 19 cities for 24 h. Cell viability results indicate a high level of variability in cytotoxicity, with extracts from Toronto, Canada, having the lowest LC50 value. Partial least squares (PLS) regression analysis was used to estimate LC50 values from OFR concentrations. PLS modeling of OFRs was moderately predictive of LC50 (p-value = 0.0003, r2 = 0.66, slope = 0.76, when comparing predicted LC50 to actual values), although only after one outlier city was removed from the analysis. A chicken ToxChip PCR array, comprising 43 target genes, was used to determine effects on gene expression, and similar to results for cell viability, gene expression profiles were highly variable among the megacities. PLS modeling was used to determine if gene expression was related to the OFR profiles of the extracts. Weak relationships to the ToxChip expression profiles could be detected for only three of the 35 OFRs (indicated by regression slopes between 0.6 and 0.5 when comparing predicted to actual OFR concentrations). While this in vitro approach shows promise in terms of evaluating effects of complex mixtures, we also identified several limitations that, if addressed in future studies, might improve its performance.

14.
Environ Sci Policy ; 125: 1-9, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34733112

RESUMEN

Polyurethane foam passive air samplers (PUF-PAS) are the most common type of passive air sampler used for a range of semi-volatile organic compounds (SVOCs), including regulated persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs), and emerging contaminants (e.g., novel flame retardants, phthalates, current-use pesticides). Data from PUF-PAS are key indicators of effectiveness of global regulatory actions on SVOCs, such as the Global Monitoring Plan of the Stockholm Convention on Persistent Organic Pollutants. While most PUF-PAS use similar double-dome metal shielding, there is no standardized dome size, shape, or deployment configuration, with many different PUF-PAS designs used in regional and global monitoring. Yet, no information is available on the comparability of data from studies using different PUF-PAS designs. We brought together 12 types of PUF-PAS used by different research groups around the world and deployed them in a multi-part intercomparison to evaluate the variability in reported concentrations introduced by different elements of PAS monitoring. PUF-PAS were deployed for 3 months in outdoor air in Kjeller, Norway in 2015-2016 in three phases to capture (1) the influence of sampler design on data comparability, (2) the influence of analytical variability when samplers are analyzed at different laboratories, and (3) the overall variability in global monitoring data introduced by differences in sampler configurations and analytical methods. Results indicate that while differences in sampler design (in particular, the spacing between the upper and lower sampler bowls) account for up to 50 % differences in masses collected by samplers, the variability introduced by analysis in different laboratories far exceeds this amount, resulting in differences spanning orders of magnitude for POPs and PAHs. The high level of variability due to analysis in different laboratories indicates that current SVOC air sampling data (i.e., not just for PUF-PAS but likely also for active air sampling) are not directly comparable between laboratories/monitoring programs. To support on-going efforts to mobilize more SVOC data to contribute to effectiveness evaluation, intercalibration exercises to account for uncertainties in air sampling, repeated at regular intervals, must be established to ensure analytical comparability and avoid biases in global-scale assessments of SVOCs in air caused by differences in laboratory performance.

15.
Environ Sci Technol ; 55(20): 13932-13941, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34590828

RESUMEN

Trophic magnification of cyclic volatile methyl siloxanes (cVMS) in a terrestrial food web was investigated by measuring concentrations of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) and two reference chemicals within air and biota samples from an avian food web located in a mixed urban-agricultural landscape. Terrestrial trophic magnification factors derived from lipid normalized concentrations (TMFLs) for D5 and D6 were 0.94 (0.17 SE) and 1.1 (0.23 SE) and not statistically different from 1 (p > 0.05); however, the TMFL of D4 was 0.62 (0.11 SE) and statistically less than 1 (p < 0.001). TMFLs of PCB-153 and p,p'-DDE were 5.6 (2.2 SE) and 6.1 (2.8 SE) and statistically greater than 1 (p < 0.001). TMFLs of cVMS in this terrestrial system were similar to those reported in aquatic systems. However, trophic magnification factors derived on a fugacity basis (TMFFs), which recognize differences in body temperature and lipid composition between organisms, were greater than corresponding TMFLs primarily because a temperature-induced thermodynamic biomagnification of hydrophobic chemicals occurs when endothermic organisms consume poikilothermic organisms. Therefore, we recommend that biomagnification studies of food webs including endothermic and poikilothermic organisms incorporate differences in body temperature and tissue composition to accurately characterize the biomagnification potential of chemicals.


Asunto(s)
Cadena Alimentaria , Contaminantes Químicos del Agua , Bioacumulación , Temperatura Corporal , Monitoreo del Ambiente , Siloxanos/análisis , Temperatura , Contaminantes Químicos del Agua/análisis
17.
Environ Sci Technol ; 55(17): 11693-11702, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34431673

RESUMEN

This study provides guidance on using polyurethane foam-based passive air samplers (PUF-PASs) for atmospheric nonane chlorinated paraffins (C9-CPs) and short-chain CPs (SCCPs) and reports SCCP concentrations in air in the Greater Toronto Area (GTA), Canada. We estimated the partition coefficients between PUF and air (KPUF-A) and between octanol and air (KOA) for C9-CP and SCCP congeners using the COSMO-RS method, so that PUF disk uptake profiles for each formula group could be calculated. We then measured SCCP concentrations in PUF disk samples collected from distinct source sectors in urban air across the GTA. Concentrations in samplers were used to calculate C9-CP and SCCP concentrations in air and the PUF disk uptake profiles revealed that time-weighted linear phase sampling was possible for congeners having log KOA values greater than 8.5. The highest SCCP concentrations, with an annual average concentration of 35.3 ng/m3, were measured at the industrial site, whereas lower but comparable SCCP concentrations were found in residential and background sites, with annual averages of 7.73 and 10.5 ng/m3, respectively. No consistent seasonal variation in SCCP concentrations was found in the six distinct source sectors. Direct measurements of KPUF-A and KOA values as a function of temperature could be used to increase accuracy in future studies.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Clorados , Contaminantes Atmosféricos/análisis , Alcanos , China , Monitoreo del Ambiente , Hidrocarburos Clorados/análisis , Parafina/análisis , Poliuretanos/análisis
18.
Environ Sci Technol ; 55(14): 9479-9488, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34213310

RESUMEN

The Global Atmospheric Passive Sampling (GAPS) network, initiated in 2005 across 55 global sites, supports the global monitoring plan (GMP) of the Stockholm Convention on Persistent Organic Pollutants (POPs) by providing information on POP concentrations in air on a global scale. These data inform assessments of the long-range transport potential of POPs and the effectiveness evaluation of chemical regulation efforts, by observing changes in concentrations over time. Currently, measurements spanning 5-10 sampling years are available for 40 sites from the GAPS Network. This study was the first time that POP concentrations in air were reported on a global scale for an extended time period and the first to evaluate worldwide trends with an internally consistent sample set. For consistency between sampling years, site- and sample specific sampling rates were calculated with a new, public online model, which accounts for the effects of wind speed variability. Concentrations for legacy POPs in air between 2005 and 2014 show different trends for different organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). The POPs discussed in this study were chosen due to being the most frequently detected, with detection at the majority of sites. PCB, endosulfan, and hexachlorocyclohexane (HCH) concentrations in air are decreasing at most sites. The global trends reflect global sources and recycling of HCH, ongoing emissions from old stockpiles for PCBs, and recent use restrictions for endosulfan. These chlorinated OCPs continue to present exposure threat to humans and ecosystems worldwide. Concentrations of other OCPs, such as chlordanes, heptachlor and dieldrin, are steady and/or declining slowly at the majority of sites, reflecting a transition from primary to secondary sources (i.e., re-emission from reservoirs where these POPs have accumulated historically) which now control ambient air burdens.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Hidrocarburos Clorados , Plaguicidas , Bifenilos Policlorados , Contaminantes Atmosféricos/análisis , Ecosistema , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Humanos , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Bifenilos Policlorados/análisis
19.
Sci Total Environ ; 789: 148013, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34323825

RESUMEN

Bisphenol A (BPA) and its analogues are high-volume production organic synthetic compounds used in the synthesis of plastics. BPA has been categorized as an endocrine disrupting compound due to its ability to disrupt the hormonal makeup of living organisms. Air and dust are common sources of exposure of BPA for living organisms and most sources are anthropogenic and a result of thermal destruction of BPA containing materials, import and export of recyclable materials (especially e-waste) and fugitive emissions near BPA handling facilities. Current reports on BPA levels in air are limited and focused on effluent and surface water analysis (due to BPA's propensity for environmental distribution to water). BPA's presence in the developing part of the world is of particular concern due to lack of regulations and uncontrolled incinerations of domestic and imported waste. The current review summarizes up-to-date scientific literature on BPA's occurrence in air, alongside physico-chemical and partitioning properties, persistence in air, seasonal variation, consideration of analytical strategies for BPA analysis and toxicological information. Globally reported air concentrations of BPA are included in this report, alongside reports on indoor air concentration of BPA and its analogues. As a special interest, levels of tetrabromobisphenol (TBBPA) are also mentioned. Overall, the highest outdoor air levels of BPA were reported in China (1.1 × 106 pg/m3) near a low-tech e-waste recycling site, while examination of indoor dust revealed the presence of bisphenol analogues used in "BPA-free" products, raising questions about their safety. Due to their low volatility, BPA and its analogues are mainly present in air associated with particles; this has important implications for their persistence in air and the role of particulate matter (especially microplastics) in their transport and deposition. Current understanding of BPA's particle association is limited, hence studying its potential for heterogeneous oxidative transformations is a pressing need required for accurate accounting of potential risk to human health and the environment.

20.
Environ Pollut ; 286: 117513, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34126512

RESUMEN

Mining-related activities in the Alberta Oil Sands Region (AOSR) are known to emit polycyclic aromatic hydrocarbons (PAHs) and related compounds to ambient air. This is a concern due to the toxicity of PAHs, including their transformation products such as nitrated (NPAHs) and oxygenated (OPAHs) PAHs. This is the first study that provided a more extensive outlook into the sources, occurrence in air, and spatial and seasonal patterns of NPAHs and OPAHs in the AOSR by using passive air sampling. A sampling campaign from 2013 to 2016 revealed concentrations of NPAHs that were much lower than those of OPAHs. The highest concentrations of NPAHs were concentrated in the region associated with extensive mining activities, with ∑NPAH concentrations ranging from 20 to 250 pg/m3. Within the oil sands (OS) mineable area, NPAHs associated with primary release appear more commonly, while NPAHs produced via oxidative transformation are predominant outside of this area. The concentrations of ∑OPAH ranged from 400 to 2400 pg/m3, with the highest air concentrations in the region located south of the main OS activity zone, with peak concentrations attributed to a 2016 forest fire event. Uptake of PAHs from ambient air and their subsequent conversion to generate OPAHs is believed to play an important role in wildfire emissions of OPAHs. The seasonal trend investigation was inconclusive, with NPAHs slightly higher during the winter, while OPAHs were slightly elevated during summer. A preliminary comparison of ambient concentrations of OPAHs and NPAHs in the AOSR to measurements in the Greater Toronto Area revealed a similar range of concentrations, but also a unique presence of certain NPAHs such as 4-nitrobiphenyl, 2-nitrodibenzothiophene, 2,8-dinitrodibenzothiophene and 6-nitrobenzo-(a)-pyrene. This indicates that AOSR might have its own NPAH profile - creating the need to better understand associated NPAH toxicity and propensity for long range transport.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Alberta , Monitoreo del Ambiente , Yacimiento de Petróleo y Gas , Hidrocarburos Policíclicos Aromáticos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...