Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Environ Manage ; 348: 119303, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37832303

RESUMEN

Animal husbandry is increasing yearly due to the growing demand for meat and livestock products, among other reasons. To meet these demands, prophylactic antibiotics are used in the livestock industry (i.e., poultry farming) to promote health and stimulate animal growth. However, antibiotics are not fully metabolized by animals, and they are evacuated to the environment with excreta. Animal manure is used as fertilizer to reduce the volume of waste generated in the livestock sector. However, manure often contains microorganisms harboring antibiotic resistance genes (ARGs). Then, the microbiome of manure applicate to the soil may contribute to the spread of antibiotic resistance in the environment, including autochthonous soil-dwelling microorganisms. The present study was conducted during the crops growing season in Poland (May to September 2019) to determine the influence of poultry manure as well as poultry manure supplemented with selected antibiotics on the diversity of the soil microbiome in treatments that had not been previously fertilized with manure and the ability of antibiotic-resistant bacteria to transfer ARGs to other soil bacteria. Antibiotic concentrations were elevated at the beginning of the study and decreased over time. Poultry manure induced significant changes in the structure of microbial communities in soil; the diversity of the soil microbiome decreased, and the abundance of bacterial genera Bradyrhizobium, Streptomyces, and Pseudomonas, which are characteristic of the analyzed manure, increased. Over time, soil microbial diversity was restored to the state observed before the application of manure. Genes conferring resistance to multiple drugs as well as genes encoding resistance to bacitracin and aminoglycosides were the most frequently identified ARGs in the analyzed bacteria, including on mobile genetic elements. Multidrug resistance was observed in 17 bacterial taxa, whereas ARGs were identified in 32 bacterial taxa identified in the soil microbiome. The results of the study conclude that the application of poultry manure supplemented with antibiotics initially affects soil microbiome and resistome diversity but finally, the soil shows resilience and returns to its original state after time, with most antibiotic resistance genes disappearing. This phenomenon is of great importance in sustainable soil health after manure application.


Asunto(s)
Antibacterianos , Suelo , Animales , Suelo/química , Antibacterianos/farmacología , Estiércol/microbiología , Genes Bacterianos , Aves de Corral/genética , Promoción de la Salud , Farmacorresistencia Microbiana/genética , Bacterias/genética , Crianza de Animales Domésticos , Microbiología del Suelo
2.
J Environ Manage ; 347: 119053, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37748295

RESUMEN

Environmentally-friendly management of landfill leachate (LL) poses a challenge, and LL is usually co-treated with municipal wastewater in wastewater treatment plants (WWTPs). The extent to which the co-treatment of LL and municipal wastewater influences the spread of antibiotic resistance (AR) in the environment has not been examined to date. Two WWTPs with similar wastewater composition and technology were studied. Landfill leachate was co-treated with wastewater in one of the studied WWTPs. Landfill leachate, untreated and treated wastewater from both WWTPs, and river water sampled upstream and downstream from the wastewater discharge point were analyzed. Physicochemical parameters, microbial diversity, and antibiotic resistance genes (ARGs) abundance were investigated to determine the impact of LL co-treatment on chemical and microbiological contamination in the environment. Landfill leachate increased pollutant concentrations in untreated wastewater and river water. Cotreatment of LL and wastewater could affect the abundance and diversity of microbial communities and the interactions between microbial species. Co-treatment also decreased the stability of microbial co-occurrence networks in the examined samples. The mexF gene was identified as a potential marker of environmental pollution with LL. This is the first study to explore the impact of LL on the occurrence of AR determinants in wastewater and rivers receiving effluents.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Genes Bacterianos , Farmacorresistencia Microbiana/genética , Antibacterianos/análisis , Agua
3.
J Hazard Mater ; 459: 132298, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37595469

RESUMEN

The aim of the present study was to analyze changes in the microbiome, resistome, and mobilome of hospital wastewater (HWW) induced by disinfection with chlorine compounds. Changes in bacterial communities and specific antibiotic resistance genes (ARGs) in HWW were determined with the use of a nanopore long-read metagenomic approach. The main hosts of ARGs in HWW were identified, and the mobility of resistance mechanisms was analyzed. Special attention was paid to the prevalence of critical-priority pathogens in the HWW microbiome, which pose the greatest threat to human health. The results of this study indicate that chlorine disinfection of HWW can induce significant changes in the structure of the total bacterial population and antibiotic resistant bacteria (ARB) communities, and that it can modify the resistome and mobilome of HWW. Disinfection favored the selection of ARGs, decreased their prevalence in HWW, while increasing their diversity. The mobility of the HWW resistome increased after disinfection. Disinfection led to the emergence of new drug resistance mechanisms in previously sensitive bacterial taxa. In conclusion, this study demonstrated that HWW disinfected with low (sublethal) concentrations of free chlorine significantly contributes to the mobility and transfer of drug resistance mechanisms (including critical mechanisms) between bacteria (including pathogens).


Asunto(s)
Microbiota , Nanoporos , Humanos , Cloro/farmacología , Aguas Residuales , Antagonistas de Receptores de Angiotensina , Desinfección , Inhibidores de la Enzima Convertidora de Angiotensina , Halógenos , Microbiota/genética , Cloruros , Antibacterianos , Hospitales
4.
Artículo en Inglés | MEDLINE | ID: mdl-36768038

RESUMEN

Antimicrobials and antibiotic resistance genes (ARGs) in substrates processed during anaerobic digestion in agricultural biogas plants (BPs) can reach the digestate (D), which is used as fertilizer. Antimicrobials and ARGs can be transferred to agricultural land, which increases their concentrations in the environment. The concentrations of 13 antibiotics in digestate samples from biogas plants (BPs) were investigated in this study. The abundance of ARGs encoding resistance to beta-lactams, tetracyclines, sulfonamides, fluoroquinolones, macrolide-lincosamide-streptogramin antibiotics, and the integrase genes were determined in the analyzed samples. The presence of cadmium, lead, nickel, chromium, zinc, and mercury was also examined. Antimicrobials were not eliminated during anaerobic digestion. Their concentrations differed in digestates obtained from different substrates and in liquid and solid fractions (ranging from 62.8 ng/g clarithromycin in the solid fraction of sewage sludge digestate to 1555.9 ng/L doxycycline in the liquid fraction of cattle manure digestate). Digestates obtained from plant-based substrates were characterized by high concentrations of ARGs (ranging from 5.73 × 102 copies/gDcfxA to 2.98 × 109 copies/gDsul1). The samples also contained mercury (0.5 mg/kg dry mass (dm)) and zinc (830 mg/kg dm). The results confirmed that digestate is a reservoir of ARGs (5.73 × 102 to 8.89 × 1010 copies/gD) and heavy metals (HMs). In addition, high concentrations of integrase genes (105 to 107 copies/gD) in the samples indicate that mobile genetic elements may be involved in the spread of antibiotic resistance. The study suggested that the risk of soil contamination with antibiotics, HMs, and ARGs is high in farms where digestate is used as fertilizer.


Asunto(s)
Mercurio , Metales Pesados , Animales , Bovinos , Antibacterianos/farmacología , Biocombustibles , Fertilizantes , Zinc , Aguas del Alcantarillado/química , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Estiércol
5.
Environ Sci Pollut Res Int ; 30(5): 11572-11583, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36094711

RESUMEN

Escherichia coli bacteria are an essential indicator in evaluations of environmental pollution, which is why they must be correctly identified. This study aimed to determine the applicability of various methods for identifying E. coli strains in environmental samples. Bacterial strains preliminary selected on mFc and Chromocult media as E. coli were identified using MALDI Biotyper techniques, based on the presence of genes characteristic of E. coli (uidA, uspA, yaiO), as well as by 16S rRNA gene sequencing. The virulence and antibiotic resistance genes pattern of bacterial strains were also analyzed to investigate the prevalence of factors that may indicate adaptation to unsupportive environmental conditions and could have any significance in further identification of E. coli. Of the strains that had been initially identified as E. coli with culture-based methods, 36-81% were classified as E. coli with the use of selected techniques. The value of Cohen's kappa revealed the highest degree of agreement between the results of 16S rRNA gene sequencing, the results obtained in the MALDI Biotyper system, and the results of the analysis based on the presence of the yaiO gene. The results of this study could help in the selection of more accurate and reliable methods which can be used in a preliminary screening and more precise identification of E. coli isolated from environmental samples.


Asunto(s)
Bacterias , Escherichia coli , ARN Ribosómico 16S/genética , Bacterias/genética , Virulencia
6.
Artículo en Inglés | MEDLINE | ID: mdl-36360746

RESUMEN

Hospitals are regarded as ecological niches of antibiotic-resistant bacteria (ARB). ARB can spread outside the hospital environment via hospital wastewater (HWW). Therefore, HWW is often disinfected in local stations to minimize that risk. Chlorine-based treatment is the most popular method of HWW disinfection around the world, however, recent research has suggested that it can contribute to the spread of antimicrobial resistance (AMR). The aim of this study is to determine the impact of HWW disinfection on the clonal similarity of Enterobacteriaceae species and their ability to produce extended-spectrum beta-lactamases (ESBLs). The study was conducted in a hospital with a local chlorine-based disinfection station. Samples of wastewater before disinfection and samples of disinfected wastewater, collected in four research seasons, were analyzed. Bacteria potentially belonging to the Enterobacteriaceae family were isolated from HWW. The Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) method was used to generate DNA fingerprints of all bacterial isolates. The isolates were phenotypically tested for the production of ESBLs. Antibiotic resistance genes (blaSHV, blaTEM, and blaOXA, blaCTX-M-1-group, blaCTX-M-2-group, blaCTX-9-group and blaCTX-M-8/25-group) were detected by PCR in strains with confirmed phenotypic ability to produce ESBLs. The ESBL+ isolates were identified by the sequencing of 16S rDNA. In the present study, the same bacterial clones were isolated from HWW before and after disinfection and HWW was sampled in different seasons. Genetic and phenotypic variations were observed in bacterial clones. ESBL+ strains were isolated significantly more often from disinfected than from non-disinfected HWW. The blaOXA gene was significantly more prevalent in isolates from disinfected than non-disinfected HWW. Enterobacter hormaechei and Klebsiella pneumoniae were the dominant species in ESBL+ strains isolated from both sampling sites. The results of this study indicate that chlorine-based disinfection promotes the survival of ESBL-producing bacteria and/or the transmission of genetic determinants of antimicrobial resistance. As a result, chlorination increases the proportion of ESBL-producing Enterobacteriaceae in disinfected wastewater. Consequently, chlorine-based disinfection practices may pose a risk to the environment and public health by accelerating the spread of antimicrobial resistance.


Asunto(s)
Cloro , Aguas Residuales , Aguas Residuales/microbiología , Cloro/farmacología , Desinfección , Antagonistas de Receptores de Angiotensina , Antibacterianos , Inhibidores de la Enzima Convertidora de Angiotensina , beta-Lactamasas/genética , Enterobacteriaceae/genética , Hospitales , Pruebas de Sensibilidad Microbiana
7.
Artículo en Inglés | MEDLINE | ID: mdl-36232152

RESUMEN

Over the past few decades, due to the excessive consumption of drugs in human and veterinary medicine, the antimicrobial resistance (AR) of microorganisms has risen considerably across the world, and this trend is predicted to intensify. Many worrying research results indicate the occurrence of pools of AR, both directly related to human activity and environmental factors. The increase of AR in the natural environment is mainly associated with the anthropogenic activity. The dissemination of AR is significantly stimulated by the operation of municipal facilities, such as wastewater treatment plants (WWTPs) or landfills, as well as biogas plants, agriculture and farming practices, including animal production and land application of manure. These activities entail a risk to public health by spreading bacteria resistant to antimicrobial products (ARB) and antibiotic resistance genes (ARGs). Furthermore, subinhibitory concentrations of antimicrobial substances additionally predispose microbial consortia and resistomes to changes in particular environments that are permeated by these micropollutants. The current state of knowledge on the fate of ARGs, their dissemination and the complexity of the AR phenomenon in relation to anthropogenic activity is inadequate. This review summarizes the state-of-the-art knowledge on AR in the environment, in particular focusing on AR spread in an anthropogenically altered environment and related environmental consequences.


Asunto(s)
Antibacterianos , Estiércol , Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Efectos Antropogénicos , Antibacterianos/farmacología , Biocombustibles , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Humanos , Aguas Residuales/microbiología
8.
Sci Rep ; 12(1): 17529, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266434

RESUMEN

Manure fertilization is the primary source of veterinary antimicrobials in the water-soil system. The research gap is the fate of antimicrobials after their release into the environment. This study aimed to provide a detailed and multi-faceted examination of fertilized cultivated fields using two types of manure (poultry and bovine) enriched with selected antimicrobials. The research focused on assessing the mobility and stability of antimicrobials in the water-soil system. Additionally, transformation products of antimicrobials in the environment were identified. The extraction (solid-phase extraction and/or solid-liquid extraction) and LC-MS/MS analysis procedures were developed to determine 14 antimicrobials in the soil and pore water samples. Ten out of fourteen antimicrobials were detected in manure-amended soil and pore water samples. The highest concentration in the soil was 109.1 ng g-1 (doxycycline), while in pore water, it was 186.6 ng L-1 (ciprofloxacin). Sixteen transformation products of antimicrobials were identified in the soil and soil-related pore water. The same transformation products were detected in both soil and soil pore water extracts, with significantly higher signal intensities observed in soil extracts than in water. Transformation products were formed in oxidation, carbonylation, and ring-opening reactions.


Asunto(s)
Antiinfecciosos , Contaminantes del Suelo , Drogas Veterinarias , Bovinos , Animales , Estiércol/análisis , Suelo , Cromatografía Liquida/métodos , Agua/análisis , Doxiciclina , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Antibacterianos/análisis , Espectrometría de Masas en Tándem/métodos , Antiinfecciosos/análisis , Ciprofloxacina/análisis
9.
Biomolecules ; 12(8)2022 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-36009054

RESUMEN

The aim of this study was to quantify ESKAPEE bacteria, genes encoding resistance to antibiotics targeting this group of pathogens, as well as integrase genes in municipal wastewater and river water. Environmental DNA was extracted from the collected samples and used in deep sequencing with the Illumina TruSeq kit. The abundance of bacterial genera and species belonging to the ESKAPEE group, 400 ARGs associated with this microbial group, and three classes of integrase genes were determined. A taxonomic analysis revealed that Acinetobacter was the dominant bacterial genus, whereas Acinetobacter baumannii and Escherichia coli were the dominant bacterial species. The analyzed samples were characterized by the highest concentrations of the following ARGs: blaGES, blaOXA-58, blaTEM, qnrB, and qnrS. Acinetobacter baumannii, E. coli, and genes encoding resistance to ß-lactams (blaVEB-1, blaIMP-1, blaGES, blaOXA-58, blaCTX-M, and blaTEM) and fluoroquinolones (qnrS) were detected in samples of river water collected downstream from the wastewater discharge point. The correlation analysis revealed a strong relationship between A. baumannii (bacterial species regarded as an emerging human pathogen) and genes encoding resistance to all tested groups of antimicrobials. The transmission of the studied bacteria (in particular A. baumannii) and ARGs to the aquatic environment poses a public health risk.


Asunto(s)
Acinetobacter baumannii , Aguas Residuales , Acinetobacter baumannii/genética , Antibacterianos/análisis , Antibacterianos/farmacología , Bacterias/genética , Escherichia coli , Humanos , Integrasas , Polonia , Agua/análisis
10.
Molecules ; 27(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35889250

RESUMEN

Manure is a major source of soil and plant contamination with veterinary drugs residues. The aim of this study was to evaluate the uptake of 14 veterinary pharmaceuticals by parsley from soil fertilized with manure. Pharmaceutical content was determined in roots and leaves. Liquid chromatography coupled with tandem mass spectrometry was used for targeted analysis. Screening analysis was performed to identify transformation products in the parsley tissues. A solid-liquid extraction procedure was developed combined with solid-phase extraction, providing recoveries of 61.9-97.1% for leaves and 51.7-95.6% for roots. Four analytes were detected in parsley: enrofloxacin, tylosin, sulfamethoxazole, and doxycycline. Enrofloxacin was detected at the highest concentrations (13.4-26.3 ng g-1). Doxycycline accumulated mainly in the roots, tylosin in the leaves, and sulfamethoxazole was found in both tissues. 14 transformation products were identified and their distribution were determined. This study provides important data on the uptake and transformation of pharmaceuticals in plant tissues.


Asunto(s)
Contaminantes Ambientales , Contaminantes del Suelo , Drogas Veterinarias , Doxiciclina/análisis , Enrofloxacina/análisis , Contaminantes Ambientales/análisis , Estiércol/análisis , Petroselinum , Suelo/química , Contaminantes del Suelo/análisis , Extracción en Fase Sólida/métodos , Sulfametoxazol , Tilosina , Drogas Veterinarias/análisis
11.
Anal Methods ; 14(21): 2083-2089, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35551562

RESUMEN

The aim of this study was to develop an effective selective/differential medium for culturing environmental strains of the Bacteroides fragilis group (BFG). This goal was achieved by modifying standard commercial Bacteroides Bile Esculin Agar (BBE Agar). Bacteroides Bile Esculin Agar was combined with substances that inhibit the growth of non-BFG bacteria, mostly Klebsiella pneumoniae and Fusobacterium mortiferum. The strains isolated from standard and modified BBE Agar were identified as BFG strains by PCR and 16S rRNA gene sequencing. The supplementation of standard BBE Agar with colistin (40 mg L-1), kanamycin (400 mg L-1) and vancomycin (7.5 mg L-1) increases the effectiveness of BFG bacteria isolation from <10% to 35%, and additional Gram staining improves the effectiveness of bacterial isolation five-fold relative to standard BBE Agar. The results of the present study also suggest that the presence of the bfr gene is not a reliable indicator for the identification of BFG strains.


Asunto(s)
Bacteroides fragilis , Aguas Residuales , Agar , Bacterias/genética , Bacteroides/genética , Bacteroides fragilis/genética , Medios de Cultivo , Esculina , ARN Ribosómico 16S/genética
12.
Sci Total Environ ; 836: 155447, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35469868

RESUMEN

This study aimed to assess the possibility of using solar light-driven photolysis and TiO2-based photocatalysis to remove (1) antibiotic residues, (2) their transformation products (TPs), (3) antibiotic resistance determinants, and (4) genes identifying the indicator bacteria in a treated wastewater (secondary effluent). 16 antimicrobials belonging to the different classes and 45 their transformation by-products were selected for the study. The most susceptible to photochemical decomposition was tetracycline, which was completely removed in the photocatalysis process and in more than 80% in the solar light-driven photolysis. 83.8% removal (on average) was observed using photolysis and 89.9% using photocatalysis in the case of the tested genes, among which the genes sul1, uidA, and intI1 showed the highest degree of removal by both methods. The study revealed that applied methods promisingly remove the tested antibiotics, their TPs and genes even in such a complex matrix including treated wastewater and photocatalysis process had a higher removal efficiency of antibiotics, TPs and genes tested. Moreover, the high percentage removal of the intI1 gene (>93%) indicates the possibilities of use of the solar light-driven photolysis and TiO2-based photocatalysis in minimizing the antibiotic resistance genes transfer by mobile genetic elements.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Antibacterianos/farmacología , Catálisis , Farmacorresistencia Microbiana/genética , Fotólisis , Titanio/química , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
13.
Sci Total Environ ; 827: 154354, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35259375

RESUMEN

During mechanical-biological treatment, wastewater droplets reach the air with bioaerosols and pose a health threat to wastewater treatment plant (WWTP) employees and nearby residents. Microbiological pollutants and antimicrobial resistance determinants are discharged to water bodies with treated wastewater (TWW), which poses a potential global epidemiological risk. In the present study, the taxonomic composition of microorganisms was analyzed, and the resistome profile and mobility of genes were determined by metagenomic next-generation sequencing in samples of untreated wastewater (UWW), wastewater collected from an activated sludge (AS) bioreactor, TWW, river water collected upstream and downstream from the wastewater discharge point, and in upper respiratory tract swabs collected from WWTP employees. Wastewater and the emitted bioaerosols near WWTP's facilities presumably contributed to the transmission of microorganisms, in particular bacteria of the phylum Actinobacteria and the associated antibiotic resistance genes (ARGs) (including ermB, ant(2″)-I, tetM, penA and cfxA2) to the upper respiratory tract of WWTP employees. The discharged wastewater increased the taxonomic diversity of microorganisms and the concentrations of various ARGs (including bacA, emrE, sul1, sul2 and tetQ) in river water. This study fills in the knowledge gap on the health risks faced by WWTP employees. The study has shown that microbiological pollutants and antimicrobial resistance determinants are also in huge quantities discharged to rivers with TWW, posing a potential global epidemiological threat.


Asunto(s)
Antiinfecciosos , Contaminantes Ambientales , Antibacterianos/análisis , Antibacterianos/farmacología , Antiinfecciosos/análisis , Bacterias/genética , Farmacorresistencia Microbiana/genética , Contaminantes Ambientales/análisis , Genes Bacterianos , Metagenómica , Aguas Residuales/análisis , Agua/análisis
14.
Sci Total Environ ; 822: 153437, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35122847

RESUMEN

The aim of this study was to analyze the prevalence of carbapenem resistance genes in Acinetobacter spp. isolated from wastewater in a municipal WWTP and to determine their spread from treated wastewater to river water with the use of conventional and molecular microbiology methods (qualitative and quantitative PCR and metagenomic analysis). Samples of untreated and treated wastewater and samples of river water obtained upstream and downstream from the wastewater discharge point were collected in 3 seasons (February, June, and September) of 2019. Acinetobacter spp. isolates were obtained by the culture method on the CHROMagar™ Acinetobacter medium. Additionally, environmental DNA was extracted from the samples for metagenomic and qPCR analyses. The presence of beta-lactam resistance genes (Ambler class B and D), insertion sequence ISAba1, and class I, II, and III integron-integrase genes was determined, and the bacterial taxonomic structure and wastewater and river samples was analyzed. Out of the 301 isolates obtained on the CHROMagar™ Acinetobacter medium, 258 belonged to the genus Acinetobacter, including 21 isolates that were identified as Acinetobacter baumannii. The highest number of Acinetobacter spp. and A. baumannii isolates were obtained from wastewater and river water samples collected in June and September. The ISAba1/blaOXA-51 complex was identified in 13 isolates, which confirms the occurrence of carbapenem-resistance isolates in the analyzed samples. The number of Acinetobacter isolates carrying antibiotic resistance genes (ARGs) increased in river water samples collected downstream from the wastewater discharge point (48 out of 258 isolates - 18.6%) compared to river water samples collected upstream from the wastewater discharge point (34 out of 258 isolates - 13.2%), which suggests that WWTP is a source of pollution in the natural environment. The conducted research provides evidence that bacteria of the genus Acinetobacter may spread alarming beta-lactam resistance in the environment and, therefore, pose a serious epidemiological threat.


Asunto(s)
Acinetobacter baumannii , Aguas Residuales , Antibacterianos/análisis , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Carbapenémicos/farmacología , Pruebas de Sensibilidad Microbiana , Polonia , Aguas Residuales/análisis , Agua/análisis , beta-Lactamasas/genética
15.
Sci Total Environ ; 808: 152144, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34864022

RESUMEN

In this study, the impact of bovine and poultry manure on the quantitative and qualitative composition of antibiotic resistance genes (ARGs) and the environmental mobilome associated with antimicrobial resistance in soil and crops was determined with the use of next generation sequencing methods. The aim of the study was to perform a metagenomic analysis of manure to estimate the risk of the transmission of ARGs and bacterial drug resistance carriers to fertilized soil and crops. The total copy number of ARGs was nearly four times higher in poultry manure (555 ppm) than in bovine manure (140 ppm), and this relationship was also noted in fertilized soil. Poultry manure induced a much greater increase in the concentrations of ARGs in the soil environment (196.4 ppm) than bovine manure (137.8 ppm) immediately after supplementation. The application of poultry manure led to the highest increase in the abundance of genes encoding resistance to tetracyclines (9%), aminoglycosides (3.5%), sulfonamides (3%), bacitracin (2%), chloramphenicol (2%), and macrolide-lincosamide-streptogramin antibiotics (1%). Heavy metals were stronger promoters of antibiotic resistance in the environment than antibiotics. Antibiotics exerted a greater influence on maintaining the diversity of ARGs than on increasing their abundance in soil. Large quantities of insertion sequences (IS), including those associated with the mobility of ARGs in the population of ESKAPEE pathogens, are introduced to soil with manure. These IS remain stable for up to several months, which indicates that manure, in particular poultry manure, significantly increases the risk of rapid ARG transfer to the environment. Manure also largely contributes to an increase in the diversity of the resistome and mobilome in the metagenome of bacteria isolated from crops. Bacteria of the phylum Proteobacteria appear to play a major role in the transmission of multiple ARGs in crops grown for human and animal consumption.


Asunto(s)
Antibacterianos , Estiércol , Animales , Antibacterianos/farmacología , Bovinos , Farmacorresistencia Bacteriana/genética , Genes Bacterianos , Humanos , Suelo , Microbiología del Suelo
16.
Sci Total Environ ; 808: 152114, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34864028

RESUMEN

The aim of the work was to develop a new HPLC-MS/MS method that allows for the simultaneous detection of antimicrobials agents (targeted analysis) and their transformation products (non-targeted analysis), which enabled the elucidation of their transformation pathways in the environment. Targeted analysis was performed for 16 selected antimicrobials agents (AMs) in wastewater collected at different stages of the treatment process and river water from sections before and after wastewater discharge. The samples were collected in the Lyna sewage treatment plant (Olsztyn, Poland) in three measuring periods at different seasons. Analytes were selected from tetracyclines, fluoroquinolones, ß-lactams, macrolides, glycopeptides, lincosamides and synthetic antibiotics. As a part of the targeted analysis, 13 AMs were detected in wastewater samples, and 7 of them in river water samples. However, their presence and concentrations were closely related to the type of the sample and the season in which the sample was taken. The highest concentrations of AMs were detected in samples collected in September (max. 1643.7 ng L-1 TRI), while the lowest AMs concentrations were found in samples collected in June (max. 136.1 ng L-1 CLR). The total content of AMs in untreated wastewater was in the range of 1.42-1644 ng L-1, while in the river water was for upstream 1.22-48.73 ng L-1 and for downstream 2.24-149 ng L-1. In the non-target analysis, 33 degradation products of the selected AMs were identified, and the transformation pathways of their degradation were speculated. In the course of the research, it was found that as a result of the processes taking place in wastewater treatment plant, the parent substances are transformed into a number of stable transformation products. Transformation products resulted from hydroxylation, ring opening, oxidation, methylation or demethylation, carboxylation, or cleavage of the CN bond of the parent AMs.


Asunto(s)
Antiinfecciosos , Carrera , Contaminantes Químicos del Agua , Antibacterianos , Espectrometría de Masas en Tándem , Aguas Residuales , Contaminantes Químicos del Agua/análisis
17.
Int J Hyg Environ Health ; 237: 113831, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34455199

RESUMEN

Wastewater treatment plants (WWTPs) release drug-resistant microorganisms to water bodies (with effluents), and WWTP employees are exposed to bioaerosol emissions from the processed wastewater. Bacteria of the genus Klebsiella, in particular carbapenemase-producing (CP), hyper-virulent (Hvr) strains of Klebsiella pneumoniae, play a special role in this process. Klebsiella spp. strains isolated from wastewater, river water and the upper respiratory tract of WWTP employees were analyzed in this study. The isolated strains were identified as K. pneumoniae (K. pn) or K. non-pneumoniae (K. npn). The prevalence of nine types of genes encoding resistance to beta-lactams, nine genes encoding virulence factors and K1/K2 capsular serotypes, three genes encoding multi drug effluent pump systems, and the class 1 integron-integrase gene was determined by PCR. A total of 284 Klebsiella spp. isolates were obtained in the study: 270 environmental strains and 14 strains from the upper respiratory tract. Among environmental isolates 90.7% (245/270) harbored beta-lactam resistance genes, 17.4% (47/270) were classified as CP strains, 11.1% (30/270) were classified as Hvr strains, and 1.9% (5/270) were classified as CP-Hvr strains. CP-Hvr strains were also isolated from WWTP employees. Genes encoding ß-lactamases (including carbapenemases), complete efflux pump systems and the K1 serotype were identified more frequently in K. pn strains. In turn, K. npn strains were characterized by a higher prevalence of blaSHV and intI1 genes and K2 serotype gene. The strains isolated from wastewater and river water also differed in the abundance of drug resistance and virulence genes. The results of the study indicate that CP-Hvr K. pn strains are possibly transmitted from wastewater via bioareosol to the upper respiratory tract of WWTP employees. blaGES-type carbapenemases significantly contributed to the spread of drug resistance in the environment.


Asunto(s)
Klebsiella , Aguas Residuales , Antibacterianos , Proteínas Bacterianas/genética , Klebsiella/genética , Pruebas de Sensibilidad Microbiana , Ríos , Agua , beta-Lactamasas/genética
18.
PLoS One ; 16(6): e0252691, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34086804

RESUMEN

The spread of antibiotic resistance is closely related with selective pressure in the environment. Wastewater from industrialized regions is characterized by higher concentrations of these pollutants than sewage from less industrialized areas. The aim of this study was to compare the concentrations of contaminants such as antibiotics and heavy metals (HMs), and to evaluate their impact on the spread of genes encoding resistance to antimicrobial drugs in samples of wastewater, sewage sludge and river water in two regions with different levels of industrialization. The factors exerting selective pressure, which significantly contributed to the occurrence of the examined antibiotic resistance genes (ARGs), were identified. The concentrations of selected gene copy numbers conferring resistance to four groups of antibiotics as well as class 1 and 2 integron-integrase genes were determined in the analyzed samples. The concentrations of six HMs and antibiotics corresponding to genes mediated resistance from 3 classes were determined. Based on network analysis, only some of the analyzed antibiotics correlated with ARGs, while HM levels were correlated with ARG concentrations, which can confirm the important role of HMs in promoting drug resistance. The samples from a wastewater treatment plant (WWTP) located an industrialized region were characterized by higher HM contamination and a higher number of significant correlations between the analyzed variables than the samples collected from a WWTP located in a less industrialized region. These results indicated that treated wastewater released into the natural environment can pose a continuous threat to human health by transferring ARGs, antibiotics and HMs to the environment. These findings shed light on the impact of industrialization on antibiotic resistance dissemination.


Asunto(s)
Antibacterianos/análisis , Agua Dulce/análisis , Metales Pesados/análisis , Aguas del Alcantarillado/análisis , Aguas Residuales/análisis , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Farmacorresistencia Microbiana/genética , Agua Dulce/microbiología , Desarrollo Industrial , Integrasas/genética , Integrones/genética , Límite de Detección , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos , Aguas Residuales/microbiología
19.
Sci Total Environ ; 785: 147411, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33957582

RESUMEN

This study determined the impact of poultry and bovine manure fertilization on the content of antibiotics, heavy metals (HMs), and the quantitative and qualitative composition of integrase and antibiotic resistance genes in soil, groundwater, and crops cultivated on manure-amended plots. Antibiotic concentration levels were analyzed using the HPLC-MS/MS, heavy metal concentration level were measured by HGAAS and ICP-OES, while the integrase genes and ARGs were quantified using Real-Time PCR (qPCR) method. Manure, soil, and crops samples contained the highest concentration of Zn (104-105 ng gdm-1) and Cu (103-105 ng gdm-1) of all HMs tested. Manure-supplemented soil was characterised by a high concentration of doxycycline and enrofloxacin. A high abundance of integrase genes was noted in samples of manure (109-1010 copies gdm-1) and soil (107-108 copies gdm-1). Among all the analyzed genes, sul1, sul2, blaTEM, and integrase genes were the most common. Results of the study demonstrate the selective character of ARGs transfer from poultry and bovine manure to plants. The only gene to occur in all studied environmental compartments was sul1 (from 102 - groundwater to 1011 - poultry manure). It was also found that animal manure may cause an increase in the HMs concentration in soil and their accumulation in crops, which may influence the health of humans and animals consuming crops grown on manure-amended soil. The high abundance of integrase genes and ARGs and their reciprocal correlations with HMs pose a serious risk of the rapid spread of antibiotic resistance in the environment. Moreover, unusual dependencies between integrase genes and selected ARGs indicate the possibility of changes in the mobility nature of genetic elements.


Asunto(s)
Contaminantes Ambientales , Estiércol , Animales , Antibacterianos , Bovinos , Genes Bacterianos , Humanos , Suelo , Microbiología del Suelo , Espectrometría de Masas en Tándem
20.
Environ Int ; 156: 106641, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34015664

RESUMEN

Conventional mechanical and biological wastewater treatment is unable to completely eliminate all pollutants, which can therefore enter surface water bodies together with treated wastewater. In addition, bioaerosols produced during wastewater treatment can pose a threat to the health of the wastewater treatment plant staff. In order to control the impact of a wastewater treatment plant (WWTP) on the surrounding environment, including its employees, samples of wastewater and water from a river which received treated wastewater were analysed in terms of their content of antibiotics and heavy metals, levels of selected physiochemical parameters, concentrations of antibiotic-resistance genes (ARGs) and genes of integrases. Furthermore, a quantitative analysis of ARGs in the metagenomic DNA from nasal and throat swabs collected from the WWPT employees was made. Both untreated and treated wastewater samples were dominated by genes of resistance to sulphonamides (sul1, sul2), MLS group of drugs (ermF, ermB) and beta-lactams (blaOXA). A significant increase in the quantities of ARGs and concentrations of antibiotics was observed in the river following the discharge of treated wastewater in comparison to their amounts in the river water upstream from the point of discharge. Moreover, a higher concentration of ARGs was detected in the DNA from swabs obtained from the wastewater treatment plant employees than from ones collected from the control group. Many statistically significant (p < 0.05) correlations between the concentration of the gene of resistance to heavy metals cnrA versus ARGs, and between the ARGs content and the concentrations of heavy metals in both wastewater and river water samples were observed. The study has demonstrated that the mechanical and biological methods of wastewater treatment are not efficient and may affect the transmission of hazardous pollutants to the aquatic environment and to the atmospheric air. It has been shown that an activated sludge bioreactor can be a potential source of the presence of multi-drug resistant microorganisms in the air, which is a health risk to persons working in WWTPs. It has also been found that an environment polluted with heavy metals is where co-selection of antibiotic resistance may occur, in the development of which integrase genes play an essential role.


Asunto(s)
Antibacterianos , Purificación del Agua , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos/genética , Humanos , Integrasas/farmacología , Aguas Residuales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA