Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Science ; 383(6687): eadi8081, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38452069

RESUMEN

Phonation critically depends on precise controls of laryngeal muscles in coordination with ongoing respiration. However, the neural mechanisms governing these processes remain unclear. We identified excitatory vocalization-specific laryngeal premotor neurons located in the retroambiguus nucleus (RAmVOC) in adult mice as being both necessary and sufficient for driving vocal cord closure and eliciting mouse ultrasonic vocalizations (USVs). The duration of RAmVOC activation can determine the lengths of both USV syllables and concurrent expiration periods, with the impact of RAmVOC activation depending on respiration phases. RAmVOC neurons receive inhibition from the preBötzinger complex, and inspiration needs override RAmVOC-mediated vocal cord closure. Ablating inhibitory synapses in RAmVOC neurons compromised this inspiration gating of laryngeal adduction, resulting in discoordination of vocalization with respiration. Our study reveals the circuits for vocal production and vocal-respiratory coordination.


Asunto(s)
Tronco Encefálico , Fonación , Respiración , Pliegues Vocales , Animales , Masculino , Ratones , Tronco Encefálico/fisiología , Bulbo Raquídeo/fisiología , Neuronas/fisiología , Fonación/fisiología , Pliegues Vocales/inervación , Pliegues Vocales/fisiología , Ratones Endogámicos C57BL , Femenino , Proteínas Proto-Oncogénicas c-fos/genética
2.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405975

RESUMEN

Placebo analgesia is a widely observed clinical phenomenon. Establishing a robust mouse model of placebo analgesia is needed for careful dissection of the underpinning circuit mechanisms. However, previous studies failed to observe consistent placebo effects in rodent models of chronic pain. We wondered whether strong placebo analgesia can be reverse engineered using general anesthesia-activated neurons in the central amygdala (CeA GA ) that can potently suppress pain. Indeed, in both acute and chronic pain models, pairing a context with CeA GA -mediated pain relief produced robust context-dependent analgesia, exceeding that induced by morphine in the same paradigm. We reasoned that if the analgesic effect was dependent on reactivation of CeA GA neurons by conditioned contextual cues, the analgesia would still be an active treatment, rather than a placebo effect. CeA GA neurons indeed receive monosynaptic inputs from temporal lobe areas that could potentially relay contextual cues directly to CeA GA . However, in vivo imaging showed that CeA GA neurons were not re-activated in the conditioned context, despite mice displaying a strong analgesic phenotype, supporting the notion that the cue-induced pain relief is true placebo analgesia. Our results show that conditioning with activation of a central pain-suppressing circuit is sufficient to engineer placebo analgesia, and that purposefully linking a context with an active treatment could be a means to harness the power of placebo for pain relief.

3.
bioRxiv ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37873071

RESUMEN

Speech generation critically depends on precise controls of laryngeal muscles and coordination with ongoing respiratory activity. However, the neural mechanisms governing these processes remain unknown. Here, we mapped laryngeal premotor circuitry in adult mice and viral-genetically identified excitatory vocal premotor neurons located in the retroambiguus nucleus (RAm VOC ) as both necessary and sufficient for driving vocal-cord closure and eliciting mouse ultrasonic vocalizations (USVs). The duration of RAm VOC activation determines the lengths of USV syllables and post-inspiration phases. RAm VOC -neurons receive inhibitory inputs from the preBötzinger complex, and inspiration needs can override RAm VOC -mediated vocal-cord closure. Ablating inhibitory synapses in RAm VOC -neurons compromised this inspiration gating of laryngeal adduction, resulting in de-coupling of vocalization and respiration. Our study revealed the hitherto unknown circuits for vocal pattern generation and vocal-respiratory coupling. One-Sentence Summary: Identification of RAm VOC neurons as the critical node for vocal pattern generation and vocal-respiratory coupling.

4.
Sci Adv ; 9(41): eadk3986, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824615

RESUMEN

The mammalian brain is composed of many brain structures, each with its own ontogenetic and developmental history. We used single-nucleus RNA sequencing to sample over 2.4 million brain cells across 18 locations in the common marmoset, a New World monkey primed for genetic engineering, and examined gene expression patterns of cell types within and across brain structures. The adult transcriptomic identity of most neuronal types is shaped more by developmental origin than by neurotransmitter signaling repertoire. Quantitative mapping of GABAergic types with single-molecule FISH (smFISH) reveals that interneurons in the striatum and neocortex follow distinct spatial principles, and that lateral prefrontal and other higher-order cortical association areas are distinguished by high proportions of VIP+ neurons. We use cell type-specific enhancers to drive AAV-GFP and reconstruct the morphologies of molecularly resolved interneuron types in neocortex and striatum. Our analyses highlight how lineage, local context, and functional class contribute to the transcriptional identity and biodistribution of primate brain cell types.


Asunto(s)
Callithrix , Neocórtex , Animales , Neocórtex/fisiología , Neuronas/fisiología , Distribución Tisular
5.
Nature ; 609(7927): 560-568, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045290

RESUMEN

Central oscillators are primordial neural circuits that generate and control rhythmic movements1,2. Mechanistic understanding of these circuits requires genetic identification of the oscillator neurons and their synaptic connections to enable targeted electrophysiological recording and causal manipulation during behaviours. However, such targeting remains a challenge with mammalian systems. Here we delimit the oscillator circuit that drives rhythmic whisking-a motor action that is central to foraging and active sensing in rodents3,4. We found that the whisking oscillator consists of parvalbumin-expressing inhibitory neurons located in the vibrissa intermediate reticular nucleus (vIRtPV) in the brainstem. vIRtPV neurons receive descending excitatory inputs and form recurrent inhibitory connections among themselves. Silencing vIRtPV neurons eliminated rhythmic whisking and resulted in sustained vibrissae protraction. In vivo recording of opto-tagged vIRtPV neurons in awake mice showed that these cells spike tonically when animals are at rest, and transition to rhythmic bursting at the onset of whisking, suggesting that rhythm generation is probably the result of network dynamics, as opposed to intrinsic cellular properties. Notably, ablating inhibitory synaptic inputs to vIRtPV neurons quenched their rhythmic bursting, impaired the tonic-to-bursting transition and abolished regular whisking. Thus, the whisking oscillator is an all-inhibitory network and recurrent synaptic inhibition has a key role in its rhythmogenesis.


Asunto(s)
Movimiento , Vías Nerviosas , Neuronas , Periodicidad , Vibrisas , Animales , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Ratones , Movimiento/fisiología , Inhibición Neural , Neuronas/fisiología , Parvalbúminas/metabolismo , Descanso , Sinapsis , Vibrisas/fisiología , Vigilia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA