Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 832513, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35450287

RESUMEN

We have previously isolated and characterized food-dwelling strains of Lactiplantibacillus (Lpb.) plantarum that are consumed naturally as part of the microbiota of table olives and raw milk cheeses. Despite being consumed at relatively high levels, the impact of such strains on the human gut microbiota is currently unclear. In the current study we evaluated the potential impact of food-dominant Lpb. plantarum strains on the human gut microbiota using a continuous fecal fermentation system. Daily inoculation of Lpb. plantarum strains led to significant, detectable levels in the fecal fermentation system. We examined the impact of the presence of Lpb. plantarum on the microbiota derived from two separate donors. For one donor, Lpb. plantarum increased alpha diversity and beta diversity. This was reflected in significant alterations in abundance of the unclassified genera, dominated by Enterobacteriaceae_unclass and Ruminococcaceae_unclass. The microbiota of the other donor was relatively unaffected following introduction of the Lpb. plantarum strains. Overall, the work describes the response of the human microbiota to the introduction of high levels of food-dominant Lpb. plantarum strains and indicates that the response may reflect interindividual differences between donor samples.

2.
Gut Microbes ; 13(1): 1-19, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33993839

RESUMEN

Administration of cultured gut isolates holds promise for modulating the altered composition and function of the microbiota in older subjects, and for promoting their health. From among 692 initial isolates, we selected 100 gut commensal strains (MCC100) based on emulating the gut microbiota of healthy subjects, and retaining strain diversity within selected species. MCC100 susceptibility to seven antibiotics was determined, and their genomes were screened for virulence factor, antimicrobial resistance and bacteriocin genes. Supplementation of healthy and frail elderly microbiota types with the MCC100 in an in vitro colon model increased alpha-diversity, raised relative abundance of taxa including Blautia luti, Bacteroides fragilis, and Sutterella wadsworthensis; and introduced taxa such as Bifidobacterium spp. Microbiota changes correlated with higher levels of branched chain amino acids, which are health-associated in elderly. The study establishes that the MCC100 consortium can modulate older subjects' microbiota composition and associated metabolome in vitro, paving the way for pre-clinical and human trials.


Asunto(s)
Envejecimiento/fisiología , Bacterias/aislamiento & purificación , Colon/microbiología , Microbioma Gastrointestinal , Anciano , Anciano de 80 o más Años , Bacterias/genética , Bacterias/metabolismo , Colon/fisiología , Heces/microbiología , Femenino , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiología , Genoma Bacteriano , Humanos , Masculino , Filogenia , Simbiosis
3.
Int J Syst Evol Microbiol ; 70(4): 2782-2858, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32293557

RESUMEN

The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and genotypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade-specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host-adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, Lactiplantibacillus, Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus and Lentilactobacillus are proposed. We also propose to emend the description of the family Lactobacillaceae to include all genera that were previously included in families Lactobacillaceae and Leuconostocaceae. The generic term 'lactobacilli' will remain useful to designate all organisms that were classified as Lactobacillaceae until 2020. This reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties, as exemplified for the emended genus Lactobacillus encompassing species adapted to vertebrates (such as Lactobacillus delbrueckii, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensensii, Lactobacillus johnsonii and Lactobacillus acidophilus) or invertebrates (such as Lactobacillus apis and Lactobacillus bombicola).


Asunto(s)
Lactobacillaceae/clasificación , Lactobacillus/clasificación , Leuconostocaceae/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Análisis de Secuencia de ADN
4.
Front Microbiol ; 11: 604048, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519747

RESUMEN

Viruses are ubiquitous. They infect almost every species and are probably the most abundant biological entities on the planet, yet they are excluded from the Tree of Life (ToL). However, there can be no doubt that viruses play a significant role in evolution, the force that facilitates all life on Earth. Conceptually, viruses are regarded by many as non-living entities that hijack living cells in order to propagate. A strict separation between living and non-living entities places viruses far from the ToL, but this may be theoretically unsound. Advances in sequencing technology and comparative genomics have expanded our understanding of the evolutionary relationships between viruses and cellular organisms. Genomic and metagenomic data have revealed that co-evolution between viral and cellular genomes involves frequent horizontal gene transfer and the occasional co-option of novel functions over evolutionary time. From the giant, ameba-infecting marine viruses to the tiny Porcine circovirus harboring only two genes, viruses and their cellular hosts are ecologically and evolutionarily intertwined. When deciding how, if, and where viruses should be placed on the ToL, we should remember that the Tree functions best as a model of biological evolution on Earth, and it is important that models themselves evolve with our increasing understanding of biological systems.

5.
BMC Oral Health ; 19(1): 13, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30642327

RESUMEN

BACKGROUND: The main objectives of this study were to describe and compare the microbiota of 1) deep dentinal lesions of deciduous teeth of children affected with severe early childhood caries (S-ECC) and 2) the unstimulated saliva of these children and 3) the unstimulated saliva of caries-free children, and to compare microbiota compositional differences and diversity of taxa in these sampled sites. METHODS: Children with S-ECC and without S-ECC were recruited. The saliva of all children with and without S-ECC was sampled along with the deep dentinal microbiota from children affected by S-ECC. The salivary microbiota of children affected by S-ECC (n = 68) was compared to that of caries-free children (n = 70), by Illumina MiSeq sequencing of 16S rRNA amplicons. Finally, the caries microbiota of deep dentinal lesions of those children with S-ECC was investigated. RESULTS: Using two beta diversity metrics (Bray Curtis dissimilarity and UniFrac distance), the caries microbiota was found to be distinct from that of either of the saliva groups (caries-free & caries-active) when bacterial abundance was taken into account. However, when the comparison was made by measuring only presence and absence of bacterial taxa, all three microbiota types separated. While the alpha diversity of the caries microbiota was lowest, the diversity difference between the caries samples and saliva samples was statistically significant (p < 0.001). The major phyla of the caries active dentinal microbiota were Firmicutes (median abundance value 33.5%) and Bacteroidetes (23.2%), with Neisseria (10.3%) being the most abundant genus, followed by Prevotella (10%). The caries-active salivary microbiota was dominated by Proteobacteria (median abundance value 38.2%) and Bacteroidetes (27.8%) with the most abundant genus being Neisseria (16.3%), followed by Porphyromonas (9.5%). Caries microbiota samples were characterized by high relative abundance of Streptococcus mutans, Prevotella spp., Bifidobacterium and Scardovia spp. CONCLUSIONS: Distinct differences between the caries microbiota and saliva microbiota were identified, with separation of both salivary groups (caries-active and caries-free) whereby rare taxa were highlighted. While the caries microbiota was less diverse than the salivary microbiota, the presence of these rare taxa could be the difference between health and disease in these children.


Asunto(s)
Caries Dental/microbiología , Placa Dental/microbiología , Microbiota , Saliva/microbiología , Niño , Preescolar , ADN Bacteriano/análisis , Bacterias Grampositivas/aislamiento & purificación , Humanos , Microbiota/genética , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S , Streptococcus mutans/clasificación , Streptococcus mutans/genética , Streptococcus mutans/aislamiento & purificación
6.
J Oral Microbiol ; 11(1): 1599652, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32128038

RESUMEN

Background: The acquisition of microbial communities and the influence of delivery mode on the oral microbiota of the newborn infant remains poorly characterised. Methods: A cohort of pregnant women were enrolled in the study (n = 84). All infants were born full term, by Spontaneous vaginal delivery (SVD) or by Caesarean section (CS). At delivery a saliva sample along with a vaginal/skin sample from the mother. Saliva samples were the taken from the infant within one week of birth, and at week 4, week 8, 6 months and 1 year of age. We used high-throughput sequencing of V4-V5 region 16S rRNA amplicons to compare the microbiota of all samples. Results: The vaginal microbiota had a lower alpha diversity than the skin microbiota of the mother, while the infant oral microbiota diversity remained relatively stable from birth to 8 weeks of age. The oral microbiota of the neonate differed by birth modality up to 1 week of age (p < 0.05), but birth modality did not have any influence on the infant oral microbiota beyond this age. Conclusions: We conclude thatbirth mode does not have an effect on the infant oral microbiota beyond 4 weeks of age, and the oral microbiota of infants continues to develop until 1 year of age.

7.
Artículo en Inglés | MEDLINE | ID: mdl-30533779

RESUMEN

Lactobacillus fermentum Lf2, an Argentine cheese isolate, can produce high concentrations of exopolysaccharides (EPS). These EPS were shown to improve the texture and rheology of yogurt, as well as to play a protective role in mice exposed to Salmonella enterica serovar Typhimurium. Three gene clusters potentially involved in EPS production were identified in different locations of the L. fermentum Lf2 genome.

9.
Appl Environ Microbiol ; 84(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29915113

RESUMEN

The genus Lactobacillus includes over 200 species that are widely used in fermented food preservation and biotechnology or that are explored for beneficial effects on health. Naming, classifying, and comparing lactobacilli have been challenging due to the high level of phenotypic and genotypic diversity that they display and because of the uncertain degree of relatedness between them and associated genera. The aim of this study was to investigate the feasibility of dividing the genus Lactobacillus into more homogeneous genera/clusters, exploiting genome-based data. The relatedness of 269 species belonging primarily to the families Lactobacillaceae and Leuconostocaceae was investigated through phylogenetic analysis (by the use of ribosomal proteins and housekeeping genes) and the assessment of the average amino acid identity (AAI) and the percentage of conserved proteins (POCP). For each subgeneric group that emerged, conserved signature genes were identified. Both distance-based and sequence-based metrics showed that the Lactobacillus genus was paraphyletic and revealed the presence of 10 methodologically consistent subclades, which were also characterized by a distinct distribution of conserved signature orthologues. We present two ways to reclassify lactobacilli: a conservative division into two subgeneric groups based on the presence/absence of a key carbohydrate utilization gene or a more radical subdivision into 10 groups that satisfy more stringent criteria for genomic relatedness.IMPORTANCE Lactobacilli have significant scientific and economic value, but their extraordinary diversity means that they are not robustly classified. The 10 homogeneous genera/subgeneric entities that we identify here are characterized by uniform patterns of the presence/absence of specific sets of genes which offer potential as discovery tools for understanding differential biological features. Reclassification/subdivision of the genus Lactobacillus into more uniform taxonomic nuclei will also provide accurate molecular markers that will be enabling for regulatory approval applications. Reclassification will facilitate scientific communication related to lactobacilli and prevent misidentification issues, which are still the major cause of mislabeling of probiotic and food products reported worldwide.


Asunto(s)
Proteínas Bacterianas/genética , Genoma Bacteriano/genética , Lactobacillus/clasificación , Lactobacillus/genética , Secuencia de Aminoácidos/genética , Genómica/métodos , Lactobacillus/metabolismo , Tipificación de Secuencias Multilocus , Filogenia , ARN Ribosómico 16S/genética , Proteínas Ribosómicas/genética
10.
Microb Genom ; 3(9): e000126, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-29114404

RESUMEN

Lactobacillus salivarius, found in the intestinal microbiota of humans and animals, is studied as an example of the sub-dominant intestinal commensals that may impart benefits upon their host. Strains typically harbour at least one megaplasmid that encodes functions contributing to contingency metabolism and environmental adaptation. RNA sequencing (RNA-seq)transcriptomic analysis of L. salivarius strain UCC118 identified the presence of a novel unusually abundant long non-coding RNA (lncRNA) encoded by the megaplasmid, and which represented more than 75 % of the total RNA-seq reads after depletion of rRNA species. The expression level of this 520 nt lncRNA in L. salivarius UCC118 exceeded that of the 16S rRNA, it accumulated during growth, was very stable over time and was also expressed during intestinal transit in a mouse. This lncRNA sequence is specific to the L. salivarius species; however, among 45 L. salivarius genomes analysed, not all (only 34) harboured the sequence for the lncRNA. This lncRNA was produced in 27 tested L. salivarius strains, but at strain-specific expression levels. High-level lncRNA expression correlated with high megaplasmid copy number. Transcriptome analysis of a deletion mutant lacking this lncRNA identified altered expression levels of genes in a number of pathways, but a definitive function of this new lncRNA was not identified. This lncRNA presents distinctive and unique properties, and suggests potential basic and applied scientific developments of this phenomenon.


Asunto(s)
Microbioma Gastrointestinal/genética , Ligilactobacillus salivarius/genética , ARN Bacteriano/genética , ARN Largo no Codificante/genética , Animales , Perfilación de la Expresión Génica , Humanos , Ratones , ARN Ribosómico 16S/genética , Análisis de Secuencia de ARN
11.
Microb Genom ; 3(8): e000115, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-29026656

RESUMEN

The genus Lactobacillus is a diverse group with a combined species count of over 200. They are the largest group within the lactic acid bacteria and one of the most important bacterial groups involved in food microbiology and human nutrition because of their fermentative and probiotic properties. Lactobacillus salivarius, a species commonly isolated from the gastrointestinal tract of humans and animals, has been described as having potential probiotic properties and results of previous studies have revealed considerable functional diversity existing on both the chromosomes and plasmids. Our study consists of comparative genomic analyses of the functional and phylogenomic diversity of 42 genomes of strains of L. salivarius using bioinformatic techniques. The main aim of the study was to describe intra-species diversity and to determine how this diversity is spread across the replicons. We found that multiple phylogenomic and non-phylogenomic methods used for reconstructing trees all converge on similar tree topologies, showing that different metrics largely agree on the evolutionary history of the species. The greatest genomic variation lies on the small plasmids, followed by the repA-type circular megaplasmid, with the chromosome varying least of all. Additionally, the presence of extra linear and circular megaplasmids is noted in several strains, while small plasmids are not always present. Glycosyl hydrolases, bacteriocins and proteases vary considerably on all replicons while two exopolysaccharide clusters and several clustered regularly interspaced short palindromic repeats-associated systems show a lot of variation on the chromosome. Overall, despite its reputation as a mammalian gastrointestinal tract specialist, the intra-specific variation of L. salivarius reveals potential strain-dependant effects on human health.


Asunto(s)
Microbioma Gastrointestinal/genética , Genoma Bacteriano , Ligilactobacillus salivarius/genética , Simbiosis/genética , Animales , Genómica , Mamíferos , Filogenia
12.
Microbiologyopen ; 6(5)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28834331

RESUMEN

In this pilot study, we determined the core fecal microbiota composition and overall microbiota diversity of domesticated herbivorous animals of three digestion types: hindgut fermenters, ruminants, and monogastrics. The 42 animals representing 10 animal species were housed on a single farm in Ireland and all the large herbivores consumed similar feed, harmonizing two of the environmental factors that influence the microbiota. Similar to other mammals, the fecal microbiota of all these animals was dominated by the Firmicutes and Bacteroidetes phyla. The fecal microbiota spanning all digestion types comprised 42% of the genera identified. Host phylogeny and, to a lesser extent, digestion type determined the microbiota diversity in these domesticated herbivores. This pilot study forms a platform for future studies into the microbiota of nonbovine and nonequine domesticated herbivorous animals.


Asunto(s)
Animales Domésticos , Heces/microbiología , Herbivoria , Microbiota , Rumen/microbiología , Rumiantes , Animales , Biodiversidad , Análisis por Conglomerados , Microbioma Gastrointestinal , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenoma , Metagenómica/métodos , Filogenia , ARN Ribosómico 16S/genética
13.
Microb Genom ; 2(2): e000043, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-28348841

RESUMEN

Firmicutes and Bacteroidetes are the predominant bacterial phyla colonizing the healthy human large intestine. Whilst both ferment dietary fibre, genes responsible for this important activity have been analysed only in the Bacteroidetes, with very little known about the Firmicutes. This work investigates the carbohydrate-active enzymes (CAZymes) in a group of Firmicutes, Roseburia spp. and Eubacterium rectale, which play an important role in producing butyrate from dietary carbohydrates and in health maintenance. Genome sequences of 11 strains representing E. rectale and four Roseburia spp. were analysed for carbohydrate-active genes. Following assembly into a pan-genome, core, variable and unique genes were identified. The 1840 CAZyme genes identified in the pan-genome were assigned to 538 orthologous groups, of which only 26 were present in all strains, indicating considerable inter-strain variability. This analysis was used to categorize the 11 strains into four carbohydrate utilization ecotypes (CUEs), which were shown to correspond to utilization of different carbohydrates for growth. Many glycoside hydrolase genes were found linked to genes encoding oligosaccharide transporters and regulatory elements in the genomes of Roseburia spp. and E. rectale, forming distinct polysaccharide utilization loci (PULs). Whilst PULs are also a common feature in Bacteroidetes, key differences were noted in these Firmicutes, including the absence of close homologues of Bacteroides polysaccharide utilization genes, hence we refer to Gram-positive PULs (gpPULs). Most CAZyme genes in the Roseburia/E. rectale group are organized into gpPULs. Variation in gpPULs can explain the high degree of nutritional specialization at the species level within this group.


Asunto(s)
Proteínas Bacterianas/genética , Colon/microbiología , Enzimas/genética , Firmicutes/enzimología , Firmicutes/genética , Polisacáridos/metabolismo , Proteínas Bacterianas/metabolismo , Butiratos/metabolismo , Carbohidratos de la Dieta/metabolismo , Enzimas/metabolismo , Firmicutes/metabolismo , Genoma Bacteriano , Humanos , Especificidad de la Especie
14.
Nat Commun ; 6: 8322, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26415554

RESUMEN

Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species.


Asunto(s)
Lactobacillus/genética , Filogenia , Biotecnología , Genoma Bacteriano , Lactobacillus/enzimología , Leuconostoc/genética , Pediococcus/genética , Análisis de Secuencia de ADN
15.
Appl Environ Microbiol ; 81(4): 1297-1308, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25501479

RESUMEN

Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin­Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15 °C and 37 °C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus inthe L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli.


Asunto(s)
Genoma Bacteriano , Lactobacillus/citología , Lactobacillus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flagelina/genética , Flagelina/metabolismo , Regulación Bacteriana de la Expresión Génica , Genómica , Lactobacillus/clasificación , Lactobacillus/metabolismo , Operón , Filogenia
16.
BMC Genomics ; 15: 679, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25124552

RESUMEN

BACKGROUND: A seventh order of methanogens, the Methanomassiliicoccales, has been identified in diverse anaerobic environments including the gastrointestinal tracts (GIT) of humans and other animals and may contribute significantly to methane emission and global warming. Methanomassiliicoccales are phylogenetically distant from all other orders of methanogens and belong to a large evolutionary branch composed by lineages of non-methanogenic archaea such as Thermoplasmatales, the Deep Hydrothermal Vent Euryarchaeota-2 (DHVE-2, Aciduliprofundum boonei) and the Marine Group-II (MG-II). To better understand this new order and its relationship to other archaea, we manually curated and extensively compared the genome sequences of three Methanomassiliicoccales representatives derived from human GIT microbiota, "Candidatus Methanomethylophilus alvus", "Candidatus Methanomassiliicoccus intestinalis" and Methanomassiliicoccus luminyensis. RESULTS: Comparative analyses revealed atypical features, such as the scattering of the ribosomal RNA genes in the genome and the absence of eukaryotic-like histone gene otherwise present in most of Euryarchaeota genomes. Previously identified in Thermoplasmatales genomes, these features are presently extended to several completely sequenced genomes of this large evolutionary branch, including MG-II and DHVE2. The three Methanomassiliicoccales genomes share a unique composition of genes involved in energy conservation suggesting an original combination of two main energy conservation processes previously described in other methanogens. They also display substantial differences with each other, such as their codon usage, the nature and origin of their CRISPRs systems and the genes possibly involved in particular environmental adaptations. The genome of M. luminyensis encodes several features to thrive in soil and sediment conditions suggesting its larger environmental distribution than GIT. Conversely, "Ca. M. alvus" and "Ca. M. intestinalis" do not present these features and could be more restricted and specialized on GIT. Prediction of the amber codon usage, either as a termination signal of translation or coding for pyrrolysine revealed contrasted patterns among the three genomes and suggests a different handling of the Pyl-encoding capacity. CONCLUSIONS: This study represents the first insights into the genomic organization and metabolic traits of the seventh order of methanogens. It suggests contrasted evolutionary history among the three analyzed Methanomassiliicoccales representatives and provides information on conserved characteristics among the overall methanogens and among Thermoplasmata.


Asunto(s)
Lisina/análogos & derivados , Thermoplasmales/genética , Proteínas Arqueales/genética , Vías Biosintéticas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Codón de Terminación , Metabolismo Energético , Genoma Arqueal , Lisina/genética , Datos de Secuencia Molecular , Filogenia , ARN de Archaea/genética , ARN Ribosómico/genética , Origen de Réplica
17.
Genome Announc ; 2(1)2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24435863

RESUMEN

We report the draft genome sequence of Lactobacillus equi strain DPC6820, isolated from equine feces. L. equi is a predominant Lactobacillus species in the horse hindgut microbiota. An examination of the genome identified genes and enzymes highlighting L. equi adaptations to the herbivorous gastrointestinal tract of the horse, including fructan hydrolases. This genome sequence may help us further understand the microbial ecology of the equine hindgut and the influence lactobacilli have on it.

18.
Genome Announc ; 1(6)2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24356836

RESUMEN

Here we report the 1.86-Mb draft genome sequence of Lactobacillus crispatus EM-LC1, a fecal isolate with antimicrobial activity. This genome sequence is expected to provide insights into the antimicrobial activity of L. crispatus and improve our knowledge of its potential probiotic traits.

19.
PLoS One ; 8(7): e68919, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935906

RESUMEN

Some Eubacterium and Roseburia species are among the most prevalent motile bacteria present in the intestinal microbiota of healthy adults. These flagellate species contribute "cell motility" category genes to the intestinal microbiome and flagellin proteins to the intestinal proteome. We reviewed and revised the annotation of motility genes in the genomes of six Eubacterium and Roseburia species that occur in the human intestinal microbiota and examined their respective locus organization by comparative genomics. Motility gene order was generally conserved across these loci. Five of these species harbored multiple genes for predicted flagellins. Flagellin proteins were isolated from R. inulinivorans strain A2-194 and from E. rectale strains A1-86 and M104/1. The amino-termini sequences of the R. inulinivorans and E. rectale A1-86 proteins were almost identical. These protein preparations stimulated secretion of interleukin-8 (IL-8) from human intestinal epithelial cell lines, suggesting that these flagellins were pro-inflammatory. Flagellins from the other four species were predicted to be pro-inflammatory on the basis of alignment to the consensus sequence of pro-inflammatory flagellins from the ß- and γ- proteobacteria. Many fliC genes were deduced to be under the control of σ(28). The relative abundance of the target Eubacterium and Roseburia species varied across shotgun metagenomes from 27 elderly individuals. Genes involved in the flagellum biogenesis pathways of these species were variably abundant in these metagenomes, suggesting that the current depth of coverage used for metagenomic sequencing (3.13-4.79 Gb total sequence in our study) insufficiently captures the functional diversity of genomes present at low (≤1%) relative abundance. E. rectale and R. inulinivorans thus appear to synthesize complex flagella composed of flagellin proteins that stimulate IL-8 production. A greater depth of sequencing, improved evenness of sequencing and improved metagenome assembly from short reads will be required to facilitate in silico analyses of complete complex biochemical pathways for low-abundance target species from shotgun metagenomes.


Asunto(s)
Bacterias/crecimiento & desarrollo , Flagelina/metabolismo , Mediadores de Inflamación/metabolismo , Intestinos/microbiología , Microbiota , Adulto , Anciano , Secuencia de Aminoácidos , Bacterias/genética , Sitios de Unión , Simulación por Computador , Electroforesis en Gel de Poliacrilamida , Heces/microbiología , Flagelina/química , Flagelina/genética , Flagelina/aislamiento & purificación , Orden Génico/genética , Sitios Genéticos/genética , Genoma Bacteriano/genética , Genómica , Humanos , Interleucina-8/metabolismo , Metagenoma , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Movimiento , Regiones Promotoras Genéticas/genética , Ribosomas/metabolismo , Alineación de Secuencia
20.
Genome Biol Evol ; 5(10): 1769-80, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23985970

RESUMEN

Increasing evidence from sequence data from various environments, including the human gut, suggests the existence of a previously unknown putative seventh order of methanogens. The first genomic data from members of this lineage, Methanomassiliicoccus luminyensis and "Candidatus Methanomethylophilus alvus," provide insights into its evolutionary history and metabolic features. Phylogenetic analysis of ribosomal proteins robustly indicates a monophyletic group independent of any previously known methanogenic order, which shares ancestry with the Marine Benthic Group D, the Marine Group II, the DHVE2 group, and the Thermoplasmatales. This phylogenetic position, along with the analysis of enzymes involved in core methanogenesis, strengthens a single ancient origin of methanogenesis in the Euryarchaeota and indicates further multiple independent losses of this metabolism in nonmethanogenic lineages than previously suggested. Genomic analysis revealed an unprecedented loss of the genes coding for the first six steps of methanogenesis from H2/CO2 and the oxidative part of methylotrophic methanogenesis, consistent with the fact that M. luminyensis and "Ca. M. alvus" are obligate H2-dependent methylotrophic methanogens. Genomic data also suggest that these methanogens may use a large panel of methylated compounds. Phylogenetic analysis including homologs retrieved from environmental samples indicates that methylotrophic methanogenesis (regardless of dependency on H2) is not restricted to gut representatives but may be an ancestral characteristic of the whole order, and possibly also of ancient origin in the Euryarchaeota. 16S rRNA and McrA trees show that this new order of methanogens is very diverse and occupies environments highly relevant for methane production, therefore representing a key lineage to fully understand the diversity and evolution of methanogenesis.


Asunto(s)
Evolución Molecular , Methanomicrobiaceae/genética , Filogenia , ARN Ribosómico 16S/genética , Biodiversidad , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA