Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2571, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519467

RESUMEN

Isoprene is a key trace component of the atmosphere emitted by vegetation and other organisms. It is highly reactive and can impact atmospheric composition and climate by affecting the greenhouse gases ozone and methane and secondary organic aerosol formation. Marine fluxes are poorly constrained due to the paucity of long-term measurements; this in turn limits our understanding of isoprene cycling in the ocean. Here we present the analysis of isoprene concentrations in the atmosphere measured across the Southern Ocean over 4 months in the summertime. Some of the highest concentrations ( >500 ppt) originated from the marginal ice zone in the Ross and Amundsen seas, indicating the marginal ice zone is a significant source of isoprene at high latitudes. Using the United Kingdom Earth System Model we show that current estimates of sea-to-air isoprene fluxes underestimate observed isoprene by a factor >20. A daytime source of isoprene is required to reconcile models with observations. The model presented here suggests such an increase in isoprene emissions would lead to >8% decrease in the hydroxyl radical in regions of the Southern Ocean, with implications for our understanding of atmospheric oxidation and composition in remote environments, often used as proxies for the pre-industrial atmosphere.

2.
Environ Res ; 233: 116497, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37356526

RESUMEN

Traffic is an important source of air pollution in Vietnamese cities. The spatio-temporal variation of air pollution derived from traffic is poorly understood. Application of dispersion modelling can help but is hindered by the local scarcity of suitable input data. This study fills the data gap, by establishing a framework employing open-access global data to model emission from traffic activities in Hanoi. The outlined methodology explicitly defines road sources, calculates their emission, and employs background pollution profiles from Copernicus Atmospheric Monitoring Service (CAMS) to produce street-scale distribution maps for CO, PM10 and PM2.5. Pollution hotspots are found near major traffic flows with the highest hourly average CO, PM10 and PM2.5 concentrations at 1206, 87.5 and 61.5 µgm-3, respectively. The relationship between concentrations and properties of the road network is assessed. Motorcycles are the main emitters of the traffic sector. Emission from Heavy Good Vehicles dominate during the night, with contribution percentages increase as it gets further away from the city core. Modelled concentrations are underestimated mainly due to low vehicular emission factor. Adjusting emission factors according to vehicle quality in Vietnam greatly improves agreement. The presence of non-traffic emission sources contributes to the model underestimation. Results for comparisons of daily averaged PM values are broadly in agreement between models and observations; however, diurnal patters are skewed. This results partly from the uncertainties linked with background pollution levels from CAMS, and partly from non-traffic sources which are not accounted for here. Further work is needed to assess the use of CAMS's concentrations in Vietnam. Meteorological input contributes to the temporal disagreement between the model and observations. The impact is most noticeable with CO concentrations during morning traffic rush hours. This study recommends approaches to improve input for future model iterations and encourage applications of dispersion modelling studies in similar economic settings.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Vietnam , Monitoreo del Ambiente/métodos , Contaminación del Aire/análisis , Emisiones de Vehículos/análisis , Material Particulado/análisis
3.
Glob Chang Biol ; 26(4): 2320-2335, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31837069

RESUMEN

Projected future climatic extremes such as heatwaves and droughts are expected to have major impacts on emissions and concentrations of biogenic volatile organic compounds (bVOCs) with potential implications for air quality, climate and human health. While the effects of changing temperature and photosynthetically active radiation (PAR) on the synthesis and emission of isoprene, the most abundant of these bVOCs, are well known, the role of other environmental factors such as soil moisture stress are not fully understood and are therefore poorly represented in land surface models. As part of the Wytham Isoprene iDirac Oak Tree Measurements campaign, continuous measurements of isoprene mixing ratio were made throughout the summer of 2018 in Wytham Woods, a mixed deciduous woodland in southern England. During this time, the United Kingdom experienced a prolonged heatwave and drought, and isoprene mixing ratios were observed to increase by more than 400% at Wytham Woods under these conditions. We applied the state-of-the-art FORest Canopy-Atmosphere Transfer canopy exchange model to investigate the processes leading to these elevated concentrations. We found that although current isoprene emissions algorithms reproduced observed mixing ratios in the canopy before and after the heatwave, the model underestimated observations by ~40% during the heatwave-drought period implying that models may substantially underestimate the release of isoprene to the atmosphere in future cases of mild or moderate drought. Stress-induced emissions of isoprene based on leaf temperature and soil water content (SWC) were incorporated into current emissions algorithms leading to significant improvements in model output. A combination of SWC, leaf temperature and rewetting emission bursts provided the best model-measurement fit with a 50% improvement compared to the baseline model. Our results highlight the need for more long-term ecosystem-scale observations to enable improved model representation of atmosphere-biosphere interactions in a changing global climate.

4.
Environ Sci Pollut Res Int ; 25(3): 2194-2210, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29116536

RESUMEN

The Antarctic continent is known to be an unpopulated region due to its extreme weather and climate conditions. However, the air quality over this continent can be affected by long-lived anthropogenic pollutants from the mainland. The Argentinian region of Ushuaia is often the main source area of accumulated hazardous gases over the Antarctic Peninsula. The main objective of this study is to report the first in situ observations yet known of surface ozone (O3) over Ushuaia, the Drake Passage, and Coastal Antarctic Peninsula (CAP) on board the RV Australis during the Malaysian Antarctic Scientific Expedition Cruise 2016 (MASEC'16). Hourly O3 data was measured continuously for 23 days using an EcoTech O3 analyzer. To understand more about the distribution of surface O3 over the Antarctic, we present the spatial and temporal of surface O3 of long-term data (2009-2015) obtained online from the World Meteorology Organization of World Data Centre for greenhouse gases (WMO WDCGG). Furthermore, surface O3 satellite data from the free online NOAA-Atmospheric Infrared Sounder (AIRS) database and online data assimilation from the European Centre for Medium-Range Weather Forecasts (ECMWF)-Monitoring Atmospheric Composition and Climate (MACC) were used. The data from both online products are compared to document the data sets and to give an indication of its quality towards in situ data. Finally, we used past carbon monoxide (CO) data as a proxy of surface O3 formation over Ushuaia and the Antarctic region. Our key findings were that the surface O3 mixing ratio during MASEC'16 increased from a minimum of 5 ppb to ~ 10-13 ppb approaching the Drake Passage and the Coastal Antarctic Peninsula (CAP) region. The anthropogenic and biogenic O3 precursors from Ushuaia and the marine region influenced the mixing ratio of surface O3 over the Drake Passage and CAP region. The past data from WDCGG showed that the annual O3 cycle has a maximum during the winter of 30 to 35 ppb between June and August and a minimum during the summer (January to February) of 10 to 20 ppb. The surface O3 mixing ratio during the summer was controlled by photochemical processes in the presence of sunlight, leading to the depletion process. During the winter, the photochemical production of surface O3 was more dominant. The NOAA-AIRS and ECMWF-MACC analysis agreed well with the MASEC'16 data but twice were higher during the expedition period. Finally, the CO past data showed the surface O3 mixing ratio was influenced by the CO mixing ratio over both the Ushuaia and Antarctic regions. Peak surface O3 and CO hourly mixing ratios reached up to ~ 38 ppb (O3) and ~ 500 ppb (CO) over Ushuaia. High CO over Ushuaia led to the depletion process of surface O3 over the region. Monthly CO mixing ratio over Antarctic (South Pole) were low, leading to the production of surface O3 over the Antarctic region.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Ozono/análisis , Contaminación del Aire/análisis , Regiones Antárticas , Monóxido de Carbono/análisis , Clima , Ozono/química , Procesos Fotoquímicos , Estaciones del Año
5.
Nature ; 549(7671): 211-218, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28905899

RESUMEN

As a result of the 1987 Montreal Protocol and its amendments, the atmospheric loading of anthropogenic ozone-depleting substances is decreasing. Accordingly, the stratospheric ozone layer is expected to recover. However, short data records and atmospheric variability confound the search for early signs of recovery, and climate change is masking ozone recovery from ozone-depleting substances in some regions and will increasingly affect the extent of recovery. Here we discuss the nature and timescales of ozone recovery, and explore the extent to which it can be currently detected in different atmospheric regions.

6.
Sci Total Environ ; 573: 494-504, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27572541

RESUMEN

Malaysian Borneo has a lower population density and is an area known for its lush rainforests. However, changes in pollutant profiles are expected due to increasing urbanisation and commercial-industrial activities. This study aims to determine the variation of surface O3 concentration recorded at seven selected stations in Malaysian Borneo. Hourly surface O3 data covering the period 2002 to 2013, obtained from the Malaysian Department of Environment (DOE), were analysed using statistical methods. The results show that the concentrations of O3 recorded in Malaysian Borneo during the study period were below the maximum Malaysian Air Quality Standard of 100ppbv. The hourly average and maximum O3 concentrations of 31 and 92ppbv reported at Bintulu (S3) respectively were the highest among the O3 concentrations recorded at the sampling stations. Further investigation on O3 precursors show that sampling sites located near to local petrochemical industrial activities, such as Bintulu (S3) and Miri (S4), have higher NO2/NO ratios (between 3.21 and 5.67) compared to other stations. The normalised O3 values recorded at all stations were higher during the weekend compared to weekdays (unlike its precursors) which suggests the influence of O3 titration by NO during weekdays. The results also show that there are distinct seasonal variations in O3 across Borneo. High surface O3 concentrations were usually observed between August and September at all stations with the exception of station S7 on the east coast. Majority of the stations (except S1 and S6) have recorded increasing averaged maximum concentrations of surface O3 over the analysed years. Increasing trends of NO2 and decreasing trends of NO influence the yearly averaged maximum of O3 especially at S3. This study also shows that variations of meteorological factors such as wind speed and direction, humidity and temperature influence the concentration of surface O3.

7.
Nat Commun ; 7: 10267, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26758808

RESUMEN

Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated.

8.
Proc Natl Acad Sci U S A ; 112(45): 13789-93, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26504212

RESUMEN

Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry-climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4-9) parts per trillion] [corrected] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA