Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(49): eadd2191, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490335

RESUMEN

SARS-CoV-2, a human coronavirus, is the causative agent of the COVID-19 pandemic. Its genome is translated into two large polyproteins subsequently cleaved by viral papain-like protease and main protease (Mpro). Polyprotein processing is essential yet incompletely understood. We studied Mpro-mediated processing of the nsp7-11 polyprotein, whose mature products include cofactors of the viral replicase, and identified the order of cleavages. Integrative modeling based on mass spectrometry (including hydrogen-deuterium exchange and cross-linking) and x-ray scattering yielded a nsp7-11 structural ensemble, demonstrating shared secondary structural elements with individual nsps. The pattern of cross-links and HDX footprint of the C145A Mpro and nsp7-11 complex demonstrate preferential binding of the enzyme active site to the polyprotein junction sites and additional transient contacts to help orient the enzyme on its substrate for cleavage. Last, proteolysis assays were used to characterize the effect of inhibitors/binders on Mpro processing/inhibition using the nsp7-11 polyprotein as substrate.

2.
Sci Adv ; 8(27): eabn9874, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35857464

RESUMEN

Key proteins of retroviruses and other RNA viruses are translated and subsequently processed from polyprotein precursors by the viral protease (PR). Processing of the HIV Gag-Pol polyprotein yields the HIV structural proteins and enzymes. Structures of the mature enzymes PR, reverse transcriptase (RT), and integrase (IN) aided understanding of catalysis and design of antiretrovirals, but knowledge of the Pol precursor architecture and function before PR cleavage is limited. We developed a system to produce stable HIV-1 Pol and determined its cryo-electron microscopy structure. RT in Pol has a similar arrangement to the mature RT heterodimer, and its dimerization may draw together two PR monomers to activate proteolytic processing. HIV-1 thus may leverage the dimerization interfaces in Pol to regulate assembly and maturation of polyprotein precursors.

3.
Viruses ; 13(8)2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34452360

RESUMEN

In most cases, proteolytic processing of the retroviral Pol portion of the Gag-Pol polyprotein precursor produces protease (PR), reverse transcriptase (RT), and integrase (IN). However, foamy viruses (FVs) express Pol separately from Gag and, when Pol is processed, only the IN domain is released. Here, we report a 2.9 Å resolution crystal structure of the mature PR-RT from prototype FV (PFV) that can carry out both proteolytic processing and reverse transcription but is in a configuration not competent for proteolytic or polymerase activity. PFV PR-RT is monomeric and the architecture of PFV PR is similar to one of the subunits of HIV-1 PR, which is a dimer. There is a C-terminal extension of PFV PR (101-145) that consists of two helices which are adjacent to the base of the RT palm subdomain, and anchors PR to RT. The polymerase domain of PFV RT consists of fingers, palm, thumb, and connection subdomains whose spatial arrangements are similar to the p51 subunit of HIV-1 RT. The RNase H and polymerase domains of PFV RT are connected by flexible linkers. Significant spatial and conformational (sub)domain rearrangements are therefore required for nucleic acid binding. The structure of PFV PR-RT provides insights into the conformational maturation of retroviral Pol polyproteins.


Asunto(s)
Péptido Hidrolasas/química , Poliproteínas/química , ADN Polimerasa Dirigida por ARN/química , Spumavirus/química , Cristalización , Péptido Hidrolasas/metabolismo , Poliproteínas/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Transcripción Reversa
4.
J Am Soc Mass Spectrom ; 32(7): 1618-1630, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34121407

RESUMEN

Coronavirus (CoV) nonstructural proteins (nsps) assemble to form the replication-transcription complex (RTC) responsible for viral RNA synthesis. nsp7 and nsp8 are important cofactors of the RTC, as they interact and regulate the activity of RNA-dependent RNA polymerase and other nsps. To date, no structure of the full-length SARS-CoV-2 nsp7:nsp8 complex has been published. The current understanding of this complex is based on structures from truncated constructs, with missing electron densities, or from related CoV species where SARS-CoV-2 nsp7 and nsp8 share upward of 90% sequence identity. Despite available structures solved using crystallography and cryo-EM representing detailed static snapshots of the nsp7:nsp8 complex, it is evident that the complex has a high degree of structural plasticity. However, relatively little is known about the conformational dynamics of the individual proteins and how they complex to interact with other nsps. Here, the solution-based structural proteomic techniques, hydrogen-deuterium exchange mass spectrometry (HDX-MS) and cross-linking mass spectrometry (XL-MS), illuminate the dynamics of SARS-CoV-2 full-length nsp7 and nsp8 proteins and the nsp7:nsp8 protein complex. Results presented from the two techniques are complementary and validate the interaction surfaces identified from the published three-dimensional heterotetrameric crystal structure of the SARS-CoV-2 truncated nsp7:nsp8 complex. Furthermore, mapping of XL-MS data onto higher-order complexes suggests that SARS-CoV-2 nsp7 and nsp8 do not assemble into a hexadecameric structure as implied by the SARS-CoV full-length nsp7:nsp8 crystal structure. Instead, our results suggest that the nsp7:nsp8 heterotetramer can dissociate into a stable dimeric unit that might bind to nsp12 in the RTC without significantly altering nsp7-nsp8 interactions.


Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus/química , Proteómica/métodos , Proteínas no Estructurales Virales/química , COVID-19/virología , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Humanos , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Modelos Moleculares , Conformación Proteica , SARS-CoV-2/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
5.
bioRxiv ; 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33688660

RESUMEN

Coronavirus (CoV) non-structural proteins (nsps) assemble to form the replication-transcription complex (RTC) responsible for viral RNA synthesis. nsp7 and nsp8 are important cofactors of the RTC, as they interact and regulate the activity of RNA-dependent RNA polymerase (RdRp) and other nsps. To date, no structure of full-length SARS-CoV-2 nsp7:nsp8 complex has been published. Current understanding of this complex is based on structures from truncated constructs or with missing electron densities and complexes from related CoV species with which SARS-CoV-2 nsp7 and nsp8 share upwards of 90% sequence identity. Despite available structures being solved using crystallography and cryo-EM representing detailed snapshots of the nsp7:nsp8 complex, it is evident that the complex has a high degree of structural plasticity. However, relatively little is known about the conformational dynamics of the complex and how it assembles to interact with other nsps. Here, the solution-based structural proteomic techniques, hydrogen-deuterium exchange mass spectrometry (HDX-MS) and crosslinking mass spectrometry (XL-MS), illuminate the structural dynamics of the SARS-CoV-2 full-length nsp7:nsp8 complex. The results presented from the two techniques are complementary and validate the interaction surfaces identified from the published three-dimensional heterotetrameric crystal structure of SARS-CoV-2 truncated nsp7:nsp8 complex. Furthermore, mapping of XL-MS data onto higher order complexes suggests that SARS-CoV-2 nsp7 and nsp8 do not assemble into a hexadecameric structure as implied by the SARS-CoV full-length nsp7:nsp8 crystal structure. Instead our results suggest that the nsp7:nsp8 heterotetramer can dissociate into a stable dimeric unit that might bind to nsp12 in the RTC without altering nsp7-nsp8 interactions.

6.
J Mol Model ; 26(11): 305, 2020 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-33068160

RESUMEN

The mechanisms of LMnO3 (L = O-, Cl, NPH3, CH3, and Cp)-catalyzed oxidation of ethyne has been studied on the singlet and triplet hypersurfaces at the M06/6-311G(d) level of theory. For the first step, the [3 + 2] pathways to the formation of the metalla-2,5-dioxol-3-ene intermediate are kinetically and thermodynamically the most favored pathways in all the complexes studied; it is favored over the [2 + 2] addition pathways to the metallaoxetene intermediate. The formation of the oxirene precursor that could give the oxirene the reported key intermediates in the ozonolysis of alkynes would most likely result from the oxidation of ethyne by MnO3Cl on the triplet potential energy surface (PES). [3 + 2] versus [2 + 1] addition of MnO3Cl with ethyne at the M06/6-311G(d) level of theory.

7.
IUCrJ ; 3(Pt 1): 51-60, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26870381

RESUMEN

Through X-ray crystallographic fragment screening, 4-bromopyrazole was discovered to be a 'magic bullet' that is capable of binding at many of the ligand 'hot spots' found in HIV-1 reverse transcriptase (RT). The binding locations can be in pockets that are 'hidden' in the unliganded crystal form, allowing rapid identification of these sites for in silico screening. In addition to hot-spot identification, this ubiquitous yet specific binding provides an avenue for X-ray crystallographic phase determination, which can be a significant bottleneck in the determination of the structures of novel proteins. The anomalous signal from 4-bromopyrazole or 4-iodopyrazole was sufficient to determine the structures of three proteins (HIV-1 RT, influenza A endonuclease and proteinase K) by single-wavelength anomalous dispersion (SAD) from single crystals. Both compounds are inexpensive, readily available, safe and very soluble in DMSO or water, allowing efficient soaking into crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...