Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(41): 28416-28425, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37766933

RESUMEN

The design and synthesis of ferrocene-functionalized organic small molecules using quinoline cores are rendered to achieve a ternary write-once-read-many (WORM) memory device. Introducing an electron-withdrawing group into the ferrocene system changes the compounds' photophysical, electrochemical, and memory behavior. The compounds were synthesized with and without an acetylene bridge between the ferrocene unit and quinoline. The electrochemical studies proved the oxidation behavior with a slightly less intense reduction peak of the ferrocene unit, demonstrating that quinolines have more reducing properties than ferrocene with bandgaps ranging from 2.67-2.75 eV. The single crystal analysis of the compounds also revealed good interactive interactions, ensuring good molecular packing. This further leads to a ternary WORM memory with oxidation of the ferrocene units and charge transfer in the compounds. The devices exhibit on/off ratios of 104 and very low threshold voltages of -0.58/-1.02 V with stabilities of 103 s and 100 cycles of all the states through retention and endurance tests.

2.
Chemistry ; 29(8): e202202569, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36394987

RESUMEN

Donor-Acceptor systems are highly appreciated in the field of organic memory devices due to their efficient charge transport within the systems. In this work, we have designed and synthesized a D-π-A system constituting ester-flanked quinolines and functionalized triarylamines (TAA) through a single-step cross-coupling reaction to fabricate memory devices via Write-Once Read-Many times (WORM) non-volatile memory. Structure-property relationships are reconnoitered for these conjugated D-π-A systems through a series of UV, fluorescence, XRD, DFT, and memory characterizations. The UV and CV data show efficient charge transfer with intramolecular charge transfer occurring at 407-417 nm and a short band gap of 2.56-2.65 eV. An enhancement in the resistive switching behavior of the memory devices is observed for the compounds with simple TAA-quinoline and tert-butylphenyl substituted TAA and fluorophenyl substituted quinoline due to balanced charge distribution in the compounds. This enhanced switching induces an on/off ratio of 103 by generating a highly ordered arrangement in the thin films. The HOMO, LUMO levels, and the ESP images together estimate a charge transfer and charge trapping as the plausible mechanism for the solution-processable WORM memory devices. The longer retention time (103  s) and lower threshold voltages (-1.21--2.12 V) of the devices makes them intriguing compounds for memory applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...