Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 12(2)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38350684

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR)-T cells are approved for use in the treatment of hematological malignancies. Axicabtagene ciloleucel (YESCARTA) and brexucabtagene autoleucel (TECARTUS) genetically modified autologous T cells expressing an anti-CD19 scFv based on the FMC63 clone have shown impressive response rates for the treatment of CD19+B cell malignancies, but there remain challenges in monitoring long-term persistence as well as the functional characterization of low-level persisting CAR-T cells in patients. Furthermore, due to CD19-negative driven relapse, having the capability to monitor patients with simultaneous detection of the B cell malignancy and persisting CAR-T cells in patient peripheral blood is important for ensuring timely treatment optionality and understanding relapse. METHODS: This study demonstrates the development and technical validation of a comprehensive liquid biopsy, high-definition single cell assay (HDSCA)-HemeCAR for (1) KTE-X19 CAR-T cell identification and analysis and (2) simultaneously monitoring the CD19-epitope landscape on neoplastic B cells in cryopreserved or fresh peripheral blood. Proprietary anti-CD19 CAR reagents, healthy donor transduced CAR-T cells, and patient samples consisting of malignant B cell fractions from manufacturing were used for assay development. RESULTS: The CAR-T assay showed an approximate limit of detection at 1 cell in 3 million with a sensitivity of 91%. Genomic analysis was additionally used to confirm the presence of the CAR transgene. This study additionally reports the successful completion of two B cell assays with multiple CD19 variants (FMC63 and LE-CD19) and a unique fourth channel biomarker (CD20 or CD22). In patient samples, we observed that CD19 isoforms were highly heterogeneous both intrapatient and interpatient. CONCLUSIONS: With the simultaneous detection of the CAR-T cells and the B cell malignancy in patient peripheral blood, the HDSCA-HemeCAR workflow may be considered for risk monitoring and patient management.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Receptores de Antígenos de Linfocitos T/genética , Recurrencia , Antígenos CD19 , Tratamiento Basado en Trasplante de Células y Tejidos
2.
NPJ Breast Cancer ; 8(1): 112, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167819

RESUMEN

Breast cancer (BC) affects 1 in every 8 women in the United States and is currently the most prevalent cancer worldwide. Precise staging at diagnosis and prognosis are essential components for the clinical management of BC patients. In this study, we set out to evaluate the feasibility of the high-definition single cell (HDSCA) liquid biopsy (LBx) platform to stratify late-stage BC, early-stage BC, and normal donors using peripheral blood samples. Utilizing 5 biomarkers, we identified rare circulating events with epithelial, mesenchymal, endothelial and hematological origin. We detected a higher level of CTCs in late-stage patients, compared to the early-stage and normal donors. Additionally, we observed more tumor-associated large extracellular vesicles (LEVs) in the early-stage, compared to late-stage and the normal donor groups. Overall, we were able to detect reproducible patterns in the enumeration of rare cells and LEVs of cancer vs. normal donors and early-stage vs. late-stage BC with high accuracy, allowing for robust stratification. Our findings illustrate the feasibility of the LBx assay to provide robust detection of rare circulating events in peripheral blood draws and to stratify late-stage BC, early-stage BC, and normal donor samples.

3.
Front Bioeng Biotechnol ; 10: 865481, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573255

RESUMEN

The virus-based immunosorbent nanoparticle is a nascent technology being developed to serve as a simple and efficacious agent in biosensing and therapeutic antibody purification. There has been particular emphasis on the use of plant virions as immunosorbent nanoparticle chassis for their diverse morphologies and accessible, high yield manufacturing via plant cultivation. To date, studies in this area have focused on proof-of-concept immunosorbent functionality in biosensing and purification contexts. Here we consolidate a previously reported pro-vector system into a single Agrobacterium tumefaciens vector to investigate and expand the utility of virus-based immunosorbent nanoparticle technology for therapeutic protein purification. We demonstrate the use of this technology for Fc-fusion protein purification, characterize key nanomaterial properties including binding capacity, stability, reusability, and particle integrity, and present an optimized processing scheme with reduced complexity and increased purity. Furthermore, we present a coupling of virus-based immunosorbent nanoparticles with magnetic particles as a strategy to overcome limitations of the immunosorbent nanoparticle sedimentation-based affinity capture methodology. We report magnetic separation results which exceed the binding capacity reported for current industry standards by an order of magnitude.

4.
Front Microbiol ; 12: 700863, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707576

RESUMEN

There are medical treatment vulnerabilities in longer-duration space missions present in the current International Space Station crew health care system with risks, arising from spaceflight-accelerated pharmaceutical degradation and resupply lag times. Bioregenerative life support systems may be a way to close this risk gap by leveraging in situ resource utilization (ISRU) to perform pharmaceutical synthesis and purification. Recent literature has begun to consider biological ISRU using microbes and plants as the basis for pharmaceutical life support technologies. However, there has not yet been a rigorous analysis of the processing and quality systems required to implement biologically produced pharmaceuticals for human medical treatment. In this work, we use the equivalent system mass (ESM) metric to evaluate pharmaceutical purification processing strategies for longer-duration space exploration missions. Monoclonal antibodies, representing a diverse therapeutic platform capable of treating multiple space-relevant disease states, were selected as the target products for this analysis. We investigate the ESM resource costs (mass, volume, power, cooling, and crew time) of an affinity-based capture step for monoclonal antibody purification as a test case within a manned Mars mission architecture. We compare six technologies (three biotic capture methods and three abiotic capture methods), optimize scheduling to minimize ESM for each technology, and perform scenario analysis to consider a range of input stream compositions and pharmaceutical demand. We also compare the base case ESM to scenarios of alternative mission configuration, equipment models, and technology reusability. Throughout the analyses, we identify key areas for development of pharmaceutical life support technology and improvement of the ESM framework for assessment of bioregenerative life support technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA