Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Physiol Genomics ; 56(4): 327-342, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38314698

RESUMEN

This study investigated the interaction between genetic differences in stress reactivity/coping and environmental challenges, such as acute stress during adolescence on adult contextual fear memory and anxiety-like behaviors. Fischer 344 (F344) and the inbred F344;WKY-Stresp3/Eer congenic strain (congenic), in which chromosomal regions from the Wistar-Kyoto (WKY) strain were introgressed into the F344 background, were exposed to a modified forced swim test during adolescence, while controls were undisturbed. In adulthood, fear learning and memory, assessed by contextual fear conditioning, were significantly greater in congenic animals compared with F344 animals, and stress during adolescence increased them even further in males of both strains. Anxiety-like behavior, measured by the open field test, was also greater in congenic than F344 animals, and stress during adolescence increased it further in both strains of adult males. Whole genome sequencing of the F344;WKY-Stresp3/Eer strain revealed an enrichment of WKY genotypes in chromosomes 9, 14, and 15. An example of functional WKY sequence variations in the congenic strain, cannabinoid receptor interacting protein 1 (Cnrip1) had a Cnrip1 transcript isoform that lacked two exons. Although the original hypothesis that the genetic predisposition to increased anxiety of the WKY donor strain would exaggerate fear memory relative to the background strain was confirmed, the consequences of adolescent stress were strain independent but sex dependent in adulthood. Molecular genomic approaches combined with genetic mapping of WKY sequence variations in chromosomes 9, 14, and 15 could aid in finding quantitative trait genes contributing to the variation in fear memory.NEW & NOTEWORTHY This study found that 1) whole genome sequencing of congenic strains should be a criterion for their recognition; 2) sequence variations between Wistar-Kyoto and Fischer 344 strains at regions of chromosomes 9, 14, and 15 contribute to differences in contextual fear memory and anxiety-like behaviors; and 3) stress during adolescence affects these behaviors in males, but not females, and is independent of strain.


Asunto(s)
Ansiedad , Miedo , Masculino , Ratas , Animales , Ratas Endogámicas WKY , Ratas Endogámicas F344 , Ansiedad/genética , Cromosomas , Animales Congénicos , Proteínas Portadoras/genética
2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338968

RESUMEN

The primary neuronal and astrocyte culture described here is from the stress-hyperreactive Wistar Kyoto (WKY) More Immobile (WMI) rat with premature aging-related memory deficit, and its nearly isogenic control, the Less Immobile (WLI) strain. Primary WMI hippocampal neurons and cortical astrocytes are significantly more sensitive to oxidative stress (OS) generated by administration of H2O2 compared to WLI cells as measured by the trypan blue cell viability assay. Intrinsic genetic vulnerability is also suggested by the decreased gene expression in WMI neurons of catalase (Cat), and in WMI cortical astrocytes of insulin-like growth factor 2 (Igf2), synuclein gamma (Sncg) and glutathione peroxidase 2 (Gpx2) compared to WLI. The expressions of several mitochondrial genes are dramatically increased in response to H2O2 treatment in WLI, but not in WMI cortical astrocytes. We propose that the vulnerability of WMI neurons to OS is due to the genetic differences between the WLI and WMI. Furthermore, the upregulation of mitochondrial genes may be a compensatory response to the generation of free radicals by OS in the WLIs, and this mechanism is disturbed in the WMIs. Thus, this pilot study suggests intrinsic vulnerabilities in the WMI hippocampal neurons and cortical astrocytes, and affirm the efficacy of this bimodal in vitro screening system for finding novel drug targets to prevent oxidative damage in illnesses.


Asunto(s)
Envejecimiento Prematuro , Envejecimiento Cognitivo , Ratas , Animales , Ratas Endogámicas WKY , Astrocitos/metabolismo , Envejecimiento Prematuro/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Proyectos Piloto , Estrés Oxidativo , Neuronas/metabolismo , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA