Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biosci ; 32(3): 501-10, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17536169

RESUMEN

Different environmental stresses to a plant may result in similar responses at the cellular and molecular level. This is due to the fact that the impacts of the stressors trigger similar strains and downstream signal transduction chains. A good example for an unspecific response is the reaction to stressors which induce water deficiency e.g.drought, salinity and cold, especially frost. The stabilizing effect of liquid water on the membrane bilayer can be supported by compatible solutes and special proteins. At the metabolic level, osmotic adjustment by synthesis of low-molecular osmolytes (carbohydrates, betains, proline) can counteract cellular dehydration and turgor loss. Taking the example of Pinus sylvestris, changes at the level of membrane composition, and concomitantly of photosynthetic capacity during frost hardening is shown. Additionally the effect of photoperiod as measured via the phytochrome system and the effect of subfreezing temperatures on the incidence of frost hardening is discussed. Extremely hydrophilic proteins such as dehydrins are common products protecting not only the biomembranes in ripening seeds (late embryogenesis abundant proteins)but accumulate also in the shoots and roots during cold adaptation, especially in drought tolerant plants. Dehydrins are characterized by conserved amino acid motifs, called the K-,Y-or S-segments. Accumulation of dehydrins can be induced not only by drought, but also by cold,salinity,treatment with abscisic acid and methyl jasmonate. Positive effects of the overexpression of a wild chickpea (Cicer pinnatifidum) dehydrin in tobacco plants on the dehydration tolerance is shown. The presentation discusses the perception of cold and drought,the subsequent signal transduction and expression of genes and their products. Differences and similarities between the plant responses to both stressors are also discussed.


Asunto(s)
Aclimatación/fisiología , Frío , Desastres , Plantas/metabolismo , Agua/metabolismo , Regulación de la Expresión Génica de las Plantas , Transducción de Señal
2.
Physiol Plant ; 120(2): 338-346, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15032869

RESUMEN

The development of castor bean (Ricinus communis L. var. sanguineus) leaves from bud break to abscission was studied to determine whether senescence of phloem precedes or follows chlorophyll degradation in the course of natural ageing of leaves. The castor bean leaf blade took 20 days for full expansion and its average life span was 60 days. From the day of full expansion on it suffered a substantial loss in N, a small loss in C, K and P and a gain in Ca, Mg and S. The content of soluble sugars increased with time, paralleled by a decrease of photosynthetic activity. Starch accumulated shortly before chlorophyll breakdown. The amino acid level in the leaves decreased steadily together with nitrate reductase and glutamine synthetase activity. Reactive oxygen species increased and oxidation-protecting compounds decreased during the life span of the leaves. Shortly after full leaf expansion an increasing number of sieve plates showed strong callose depositions when visualized by aniline blue method. At day 40 only half of the sieve tubes appeared functional. Chlorophyll breakdown followed these processes with a time lag of approximately 10 days. The sieve tube sap of ageing leaves had the same sucrose concentrations as young leaves, whereas amino acid concentrations decreased. High levels of reduced ascorbic acid and glutathione together with increasing levels of glutaredoxin indicated oxidative strain during senescence. We speculate that the gradual increase of reactive oxygen species during ageing together with the import of calcium ions lead to the stimulation of callose synthesis in plasmodesmata and sieve plates with the consequence of inhibition of phloem transport leading to carbohydrate back-up in the leaf blade. The latter may finally induce chlorophyll breakdown and, at the end, leaf abscission at the petiole base. Thus phloem blockage would precede and may be causal for chlorophyll degradation in leaf senescence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...