Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 365(6451): 342-347, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31296649

RESUMEN

The nuclear proteome is rich in stress-sensitive proteins, which suggests that effective protein quality control mechanisms are in place to ensure conformational maintenance. We investigated the role of the nucleolus in this process. In mammalian tissue culture cells under stress conditions, misfolded proteins entered the granular component (GC) phase of the nucleolus. Transient associations with nucleolar proteins such as NPM1 conferred low mobility to misfolded proteins within the liquid-like GC phase, avoiding irreversible aggregation. Refolding and extraction of proteins from the nucleolus during recovery from stress was Hsp70-dependent. The capacity of the nucleolus to store misfolded proteins was limited, and prolonged stress led to a transition of the nucleolar matrix from liquid-like to solid, with loss of reversibility and dysfunction in quality control. Thus, we suggest that the nucleolus has chaperone-like properties and can promote nuclear protein maintenance under stress.


Asunto(s)
Nucléolo Celular/metabolismo , Proteínas Nucleares/química , Pliegue de Proteína , Células HEK293 , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Nucleofosmina , Transición de Fase , Proteoma , Técnicas de Cultivo de Tejidos
2.
Nature ; 566(7742): 131-135, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30675061

RESUMEN

Cells use compartmentalization of enzymes as a strategy to regulate metabolic pathways and increase their efficiency1. The α- and ß-carboxysomes of cyanobacteria contain ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-a complex of eight large (RbcL) and eight small (RbcS) subunits-and carbonic anhydrase2-4. As HCO3- can diffuse through the proteinaceous carboxysome shell but CO2 cannot5, carbonic anhydrase generates high concentrations of CO2 for carbon fixation by Rubisco6. The shell also prevents access to reducing agents, generating an oxidizing environment7-9. The formation of ß-carboxysomes involves the aggregation of Rubisco by the protein CcmM10, which exists in two forms: full-length CcmM (M58 in Synechococcus elongatus PCC7942), which contains a carbonic anhydrase-like domain8 followed by three Rubisco small subunit-like (SSUL) modules connected by flexible linkers; and M35, which lacks the carbonic anhydrase-like domain11. It has long been speculated that the SSUL modules interact with Rubisco by replacing RbcS2-4. Here we have reconstituted the Rubisco-CcmM complex and solved its structure. Contrary to expectation, the SSUL modules do not replace RbcS, but bind close to the equatorial region of Rubisco between RbcL dimers, linking Rubisco molecules and inducing phase separation into a liquid-like matrix. Disulfide bond formation in SSUL increases the network flexibility and is required for carboxysome function in vivo. Notably, the formation of the liquid-like condensate of Rubisco is mediated by dynamic interactions with the SSUL domains, rather than by low-complexity sequences, which typically mediate liquid-liquid phase separation in eukaryotes12,13. Indeed, within the pyrenoids of eukaryotic algae, the functional homologues of carboxysomes, Rubisco adopts a liquid-like state by interacting with the intrinsically disordered protein EPYC114. Understanding carboxysome biogenesis will be important for efforts to engineer CO2-concentrating mechanisms in plants15-19.


Asunto(s)
Proteínas Bacterianas/metabolismo , Orgánulos/metabolismo , Multimerización de Proteína , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo , Synechococcus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/ultraestructura , Microscopía por Crioelectrón , Disulfuros/metabolismo , Modelos Moleculares , Oxidación-Reducción , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ribulosa-Bifosfato Carboxilasa/ultraestructura
3.
Science ; 358(6368): 1272-1278, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29217567

RESUMEN

Plant RuBisCo, a complex of eight large and eight small subunits, catalyzes the fixation of CO2 in photosynthesis. The low catalytic efficiency of RuBisCo provides strong motivation to reengineer the enzyme with the goal of increasing crop yields. However, genetic manipulation has been hampered by the failure to express plant RuBisCo in a bacterial host. We achieved the functional expression of Arabidopsis thaliana RuBisCo in Escherichia coli by coexpressing multiple chloroplast chaperones. These include the chaperonins Cpn60/Cpn20, RuBisCo accumulation factors 1 and 2, RbcX, and bundle-sheath defective-2 (BSD2). Our structural and functional analysis revealed the role of BSD2 in stabilizing an end-state assembly intermediate of eight RuBisCo large subunits until the small subunits become available. The ability to produce plant RuBisCo recombinantly will facilitate efforts to improve the enzyme through mutagenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Escherichia coli/enzimología , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 60/metabolismo , Cloroplastos/metabolismo , Cristalografía por Rayos X , Chaperoninas del Grupo I/química , Chaperoninas del Grupo I/genética , Chaperoninas del Grupo I/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutagénesis , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/genética
4.
J Intern Med ; 280(2): 164-76, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27237473

RESUMEN

Amyloid diseases are characterized by the accumulation of insoluble, ß-strand-rich aggregates. The underlying structural conversions are closely associated with cellular toxicity, but can also drive the formation of functional protein assemblies. In recent years, studies in the field of structural studies have revealed astonishing insights into the origins, mechanisms and implications of amyloid formation. Notably, high-resolution crystal structures of peptides in amyloid-like fibrils and prefibrillar oligomers have become available despite their challenging chemical nature. Nuclear magnetic resonance spectroscopy has revealed that dynamic local polymorphisms in the benign form of the prion protein affect the transformation into amyloid fibrils and the transmissibility of prion diseases. Studies of the structures and interactions of chaperone proteins help us to understand how the cellular proteostasis network is able to recognize different stages of aberrant protein folding and prevent aggregation. In this review, we will focus on recent developments that connect the different aspects of amyloid biology and discuss how understanding the process of amyloid formation and the associated defence mechanisms can reveal targets for pharmacological intervention that may become the first steps towards clinically viable treatment strategies.


Asunto(s)
Amiloide/biosíntesis , Amiloide/fisiología , Amiloidosis/fisiopatología , Amiloide/química , Amiloidosis/patología , Animales , Humanos , Chaperonas Moleculares/fisiología , Estructura Molecular , Pliegue de Proteína
5.
J Mol Biol ; 313(4): 861-72, 2001 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-11697909

RESUMEN

The infectious prion protein, PrP(Sc), a predominantly beta-sheet aggregate, is derived from PrP(C), the largely alpha-helical cellular isoform of PrP. Conformational conversion of PrP(C) into PrP(Sc) has been suggested to involve a chaperone-like factor. Here we report that the bacterial chaperonin GroEL, a close homolog of eukaryotic Hsp60, can catalyze the aggregation of chemically denatured and of folded, recombinant PrP in a model reaction in vitro. Aggregates form upon ATP-dependent release of PrP from chaperonin and have certain properties of PrP(Sc), including a high beta-sheet content, the ability to bind the dye Congo red, detergent-insolubility and increased protease-resistance. A conserved sequence segment of PrP (residues 90-121), critical for PrP(Sc) generation in vivo, is also required for chaperonin-mediated aggregate formation in vitro. Initial binding of refolded, alpha-helical PrP to chaperonin is mediated by the unstructured N-terminal segment of PrP (residues 23-121) and is followed by a rearrangement of the globular PrP core-domain. These results show that chaperonins of the Hsp60 class can, in principle, mediate PrP aggregation de novo, i.e. independently of a pre-existent PrP(Sc) template.


Asunto(s)
Chaperoninas/metabolismo , Priones/química , Priones/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Chaperonina 10/química , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/metabolismo , Chaperoninas/química , Rojo Congo/metabolismo , Secuencia Conservada , Endopeptidasas/metabolismo , Concentración de Iones de Hidrógeno , Ratones , Modelos Biológicos , Unión Proteica , Desnaturalización Proteica , Pliegue de Proteína , Renaturación de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Solubilidad
7.
Cell ; 107(2): 223-33, 2001 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-11672529

RESUMEN

The GroEL/GroES chaperonin system mediates the folding of a range of newly synthesized polypeptides in the bacterial cytosol. Using a rapid biotin-streptavidin-based inhibition of chaperonin function, we show that the cage formed by GroEL and its cofactor GroES can have a dual role in promoting folding. First, enclosure of nonnative protein in the GroEL:GroES complex is essential for folding to proceed unimpaired by aggregation. Second, folding inside the cage can be significantly faster than folding in free solution, independently of ATP-driven cycles of GroES binding and release. This suggests that confinement of unfolded protein in the narrow hydrophilic space of the chaperonin cage smoothes the energy landscape for the folding of some proteins, increasing the flux of folding intermediates toward the native state.


Asunto(s)
Chaperonina 60/química , Chaperoninas/química , Animales , Biotinilación , Bovinos , Chaperonina 10/química , Cromatografía en Gel , Citosol/metabolismo , Cinética , Microscopía Electrónica , Modelos Biológicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Ribulosa-Bifosfato Carboxilasa/química , Estreptavidina/metabolismo , Resonancia por Plasmón de Superficie , Tiosulfato Azufretransferasa/química , Factores de Tiempo
8.
Biochem Soc Symp ; (68): 45-68, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11573347

RESUMEN

While it is clear that many unfolded proteins can attain their native state spontaneously in vitro, the efficiency of such folding is usually limited to conditions far removed from those encountered within cells. Two properties of the cellular environment are expected to enhance strongly the propensity of incompletely folded polypeptides to misfold and aggregate: the crowding effect caused by the high concentration of macromolecules, and the close proximity of nascent polypeptide chains emerging from polyribosomes. However, in the living cell, non-productive protein folding is in many, if not most, cases prevented by the action of a highly conserved set of proteins termed molecular chaperones. In the cytoplasm, the Hsp70 (heat-shock protein of 70 kDa) and chaperonin families of molecular chaperones appear to be the major contributors to efficient protein folding during both normal conditions and adverse conditions such as heat stress. Hsp70 chaperones recognize and shield short, hydrophobic peptide segments in the context of non-native polypeptides and probably promote folding by decreasing the concentration of aggregation-prone intermediates. In contrast, the chaperonins interact with and globally enclose collapsed folding intermediates in a central cavity where efficient folding can proceed in a protected environment. For a number of proteins, folding requires the co-ordinated action of both of these molecular chaperones.


Asunto(s)
Proteínas de Escherichia coli , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Animales , Proteínas Bacterianas/metabolismo , Citoplasma/metabolismo , Células Eucariotas , Proteínas del Choque Térmico HSP40 , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Modelos Biológicos , Chaperonas Moleculares/genética , Células Procariotas
9.
FEBS Lett ; 503(1): 41-5, 2001 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-11513851

RESUMEN

A hallmark of prion diseases is the accumulation of an abnormally folded prion protein, denoted PrP(Sc). Here we describe a new and highly sensitive method for the detection of PrP(Sc) in brain and other tissue samples that utilizes both PrP(Sc) diagnostic criteria in combination; protease resistance and aggregation. Upon filtration of tissue extracts derived from scrapie- or bovine spongiform encephalopathy-infected animals, PrP(Sc) is retained and detected on the membranes. Laborious steps such as SDS-PAGE and Western blotting are avoided with concomitant gain in sensitivity and reliability. The new procedure also proved useful in a screen for anti-prion compounds in a scrapie-infected cell culture model.


Asunto(s)
Proteínas PrPSc/análisis , Animales , Western Blotting , Encéfalo/metabolismo , Bovinos , Evaluación Preclínica de Medicamentos/métodos , Electroforesis en Gel de Poliacrilamida , Encefalopatía Espongiforme Bovina/metabolismo , Ratones , Proteínas PrPSc/antagonistas & inhibidores , Proteínas PrPSc/metabolismo , Sensibilidad y Especificidad , Células Tumorales Cultivadas
10.
J Cell Biol ; 154(2): 267-73, 2001 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-11470816

RESUMEN

Hsp90 is unique among molecular chaperones. The majority of its known substrates are signal transduction proteins, and recent work indicates that it uses a novel protein-folding strategy.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Pliegue de Proteína , Adenosina Trifosfatasas/metabolismo , Animales , Citosol/metabolismo , Evolución Molecular , Humanos , Modelos Moleculares , Estructura Terciaria de Proteína/fisiología , Proteínas/metabolismo , Transducción de Señal/fisiología
11.
Hum Mol Genet ; 10(12): 1307-15, 2001 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-11406612

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disorder with no effective treatment. Geldanamycin is a benzoquinone ansamycin that binds to the heat shock protein Hsp90 and activates a heat shock response in mammalian cells. In this study, we show by using a filter retardation assay and immunofluorescence microscopy that treatment of mammalian cells with geldanamycin at nanomolar concentrations induces the expression of Hsp40, Hsp70 and Hsp90 and inhibits HD exon 1 protein aggregation in a dose-dependent manner. Similar results were obtained by overexpression of Hsp70 and Hsp40 in a separate cell culture model of HD. This is the first demonstration that huntingtin protein aggregation in cells can be suppressed by chemical compounds activating a specific heat shock response. These findings may provide the basis for the development of a novel pharmacotherapy for HD and related glutamine repeat disorders.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Enfermedad de Huntington/metabolismo , Quinonas/farmacología , Secuencia de Aminoácidos , Animales , Benzoquinonas , Células COS , Exones , Proteínas del Choque Térmico HSP40 , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteína Huntingtina , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Enfermedad de Huntington/inmunología , Lactamas Macrocíclicas , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Péptidos/metabolismo
12.
Biol Chem ; 382(3): 499-504, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11347901

RESUMEN

Radicicol (RAD) and the benzoquinone ansamycin geldanamycin (GA) are potential anticancer drugs known to inhibit heat shock protein 90 (hsp90) and, therefore, the activation of proteins dependent on its function such as proto-oncogenic kinases and nuclear receptors. Using the glucocorticoid receptor (GR) as a model system we analysed the effects of RAD and various benzoquinone ansamycins. All compounds efficiently abolished GR-dependent transactivation. Surprisingly, whenever one of the ansamycins was applied in combination with RAD, synergistic inhibition of GR-dependent transcription and of hormone binding of GR was observed. In contrast, combination of two ansamycins showed no synergy. These findings suggest synergism within the hsp90 dimer and may open new ways to explore hsp90 as therapeutic target.


Asunto(s)
Antibacterianos/farmacología , Lactonas/farmacología , Receptores de Glucocorticoides/antagonistas & inhibidores , Benzoquinonas , Sinergismo Farmacológico , Proteínas HSP90 de Choque Térmico/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/genética , Humanos , Lactamas Macrocíclicas , Macrólidos , Quinonas/farmacología , Receptores de Glucocorticoides/genética , Rifabutina/análogos & derivados , Proteínas de Saccharomyces cerevisiae , Células Tumorales Cultivadas
13.
Science ; 291(5508): 1553-7, 2001 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-11222862

RESUMEN

Bag (Bcl2-associated athanogene) domains occur in a class of cofactors of the eukaryotic chaperone 70-kilodalton heat shock protein (Hsp70) family. Binding of the Bag domain to the Hsp70 adenosine triphosphatase (ATPase) domain promotes adenosine 5'-triphosphate-dependent release of substrate from Hsp70 in vitro. In a 1.9 angstrom crystal structure of a complex with the ATPase of the 70-kilodalton heat shock cognate protein (Hsc70), the Bag domain forms a three-helix bundle, inducing a conformational switch in the ATPase that is incompatible with nucleotide binding. The same switch is observed in the bacterial Hsp70 homolog DnaK upon binding of the structurally unrelated nucleotide exchange factor GrpE. Thus, functional convergence has allowed proteins with different architectures to trigger a conserved conformational shift in Hsp70 that leads to nucleotide exchange.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bovinos , Cristalografía por Rayos X , Proteínas de Unión al ADN , Evolución Molecular , Proteínas del Choque Térmico HSC70 , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Isoformas de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Factores de Transcripción
14.
Cell ; 103(4): 621-32, 2000 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-11106732

RESUMEN

Prefoldin (GimC) is a hexameric molecular chaperone complex built from two related classes of subunits and present in all eukaryotes and archaea. Prefoldin interacts with nascent polypeptide chains and, in vitro, can functionally substitute for the Hsp70 chaperone system in stabilizing non-native proteins for subsequent folding in the central cavity of a chaperonin. Here, we present the crystal structure and characterization of the prefoldin hexamer from the archaeum Methanobacterium thermoautotrophicum. Prefoldin has the appearance of a jellyfish: its body consists of a double beta barrel assembly with six long tentacle-like coiled coils protruding from it. The distal regions of the coiled coils expose hydrophobic patches and are required for multivalent binding of nonnative proteins.


Asunto(s)
Proteínas Arqueales/química , Chaperonas Moleculares/química , Secuencia de Aminoácidos , Cristalografía , Methanobacterium , Modelos Moleculares , Chaperonas Moleculares/clasificación , Datos de Secuencia Molecular , Movimiento (Física) , Fragmentos de Péptidos/química , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína , Homología de Secuencia de Aminoácido , Propiedades de Superficie
15.
Proc Natl Acad Sci U S A ; 97(26): 14151-5, 2000 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-11087821

RESUMEN

We have analyzed a newly described archaeal GimC/prefoldin homologue, termed MtGimC, by using nanoflow electrospray coupled with time-of-flight MS. The molecular weight of the complex from Methanobacterium thermoautotrophicum corresponds to a well-defined hexamer of two alpha subunits and four beta subunits. Dissociation of the complex within the gas phase reveals a quaternary arrangement of two central subunits, both alpha, and four peripheral beta subunits. By constructing a thermally controlled nanoflow device, we have monitored the thermal stability of the complex by MS. The results of these experiments demonstrate that a significant proportion of the MtGimC hexamer remains intact under low-salt conditions at elevated temperatures. This finding is supported by data from CD spectroscopy, which show that at physiological salt concentrations, the complex remains stable at temperatures above 65 degrees C. Mass spectrometric methods were developed to monitor in real time the assembly of the MtGimC hexamer from its component subunits. By using this methodology, the mass spectra recorded throughout the time course of the experiment showed the absence of any significantly populated intermediates, demonstrating that the assembly process is highly cooperative. Taken together, these data show that the complex is stable under the elevated temperatures that are appropriate for its hyperthermophile host and demonstrate that the assembly pathway leads exclusively to the hexamer, which is likely to be a structural unit in vivo.


Asunto(s)
Proteínas Arqueales/química , Methanobacterium , Chaperonas Moleculares/química , Methanobacterium/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Factores de Tiempo
16.
EMBO J ; 19(21): 5930-40, 2000 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-11060043

RESUMEN

The molecular chaperone Hsp90 binds and hydrolyses ATP, but how this ATPase activity regulates the interaction of Hsp90 with a polypeptide substrate is not yet understood. Using the glucocorticoid receptor ligand binding domain as a substrate, we show that dissociation of Hsp90 from bound polypeptide depends on the Hsp90 ATPase and is blocked by geldanamycin, a specific ATPase inhibitor. The co-chaperone p23 greatly stimulates Hsp90 substrate release with ATP, but not with the non-hydrolysable nucleotides ATPgammaS or AMP-PNP. Point mutants of Hsp90 with progressively lower ATPase rates are progressively slower in ATP-dependent substrate release but are still regulated by p23. In contrast, ATPase-inactive Hsp90 mutants release substrate poorly and show no p23 effect. These results outline an ATP-driven cycle of substrate binding and release for Hsp90 which differs from that of other ATP-driven chaperones. Conversion of the ATP state of Hsp90 to the ADP state through hydrolysis is required for efficient release of substrate polypeptide. p23 couples the ATPase activity to polypeptide dissociation and thus can function as a substrate release factor for Hsp90.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Fosfoproteínas/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Animales , Benzoquinonas , Inhibidores Enzimáticos/farmacología , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Humanos , Hidrólisis , Técnicas In Vitro , Cinética , Lactamas Macrocíclicas , Ligandos , Sustancias Macromoleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Mutación Puntual , Prostaglandina-E Sintasas , Estructura Terciaria de Proteína , Quinonas/farmacología , Conejos , Receptores de Glucocorticoides/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
18.
Proc Natl Acad Sci U S A ; 97(14): 7841-6, 2000 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-10859365

RESUMEN

The deposition of protein aggregates in neurons is a hallmark of neurodegenerative diseases caused by polyglutamine (polyQ) proteins. We analyzed the effects of the heat shock protein (Hsp) 70 chaperone system on the aggregation of fragments of huntingtin (htt) with expanded polyQ tracts. In vitro, Hsp70 and its cochaperone Hsp40 suppressed the assembly of htt into detergent-insoluble amyloid-like fibrils in an ATP-dependent manner and caused the formation of amorphous, detergent-soluble aggregates. The chaperones were most active in preventing fibrillization when added during the lag phase of the polymerization reaction. Similarly, coexpression of Hsp70 or Hsp40 with htt in yeast inhibited the formation of large, detergent-insoluble polyQ aggregates, resulting in the accumulation of detergent-soluble inclusions. Thus, the recently established potency of Hsp70 and Hsp40 to repress polyQ-induced neurodegeneration may be based on the ability of these chaperones to shield toxic forms of polyQ proteins and to direct them into nontoxic aggregates.


Asunto(s)
Amiloide/metabolismo , Chaperoninas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Amiloide/ultraestructura , Chaperonina 60/metabolismo , Exones , Proteínas del Choque Térmico HSP40 , Proteínas de Choque Térmico/metabolismo , Humanos , Proteína Huntingtina , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/ultraestructura , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestructura , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/ultraestructura , Péptidos/genética , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Expansión de Repetición de Trinucleótido
19.
Proc Natl Acad Sci U S A ; 97(10): 5185-90, 2000 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-10805779

RESUMEN

Intact Escherichia coli ribosomes have been projected into the gas phase of a mass spectrometer by means of nanoflow electrospray techniques. Species with mass/charge ratios in excess of 20,000 were detected at the level of individual ions by using time-of-flight analysis. Once in the gas phase the stability of intact ribosomes was investigated and found to increase as a result of cross-linking ribosomal proteins to the rRNA. By lowering the Mg(2+) concentration in solutions containing ribosomes the particles were found to dissociate into 30S and 50S subunits. The resolution of the charge states in the spectrum of the 30S subunit enabled its mass to be determined as 852,187 +/- 3,918 Da, a value within 0.6% of that calculated from the individual proteins and the 16S RNA. Further dissociation into smaller macromolecular complexes and then individual proteins could be induced by subjecting the particles to increasingly energetic gas phase collisions. The ease with which proteins dissociated from the intact species was found to be related to their known interactions in the ribosome particle. The results show that emerging mass spectrometric techniques can be used to characterize a fully functional biological assembly as well as its isolated components.


Asunto(s)
Escherichia coli/ultraestructura , Ribosomas/ultraestructura , Reactivos de Enlaces Cruzados , Magnesio/farmacología , Espectrometría de Masas/métodos , Peso Molecular , ARN Ribosómico/química , Proteínas Ribosómicas/química , Ribosomas/química , Ribosomas/efectos de los fármacos
20.
Biol Chem ; 381(2): 121-6, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10746743

RESUMEN

Peroxynitrite (ONOO-), a potent oxidizing and nitrating species, has been linked to covalent modifications of biomolecules in a number of pathological conditions. In S. cerevisiae, a model eukaryotic cell system, ONOO- was found to be more potent than hydrogen peroxide in oxidizing thiols, inducing heat shock proteins (Hsp70) and enhancing the ubiquitination of proteins. As identified by microsequence analysis following immunoprecipitation with anti-nitrotyrosine antibodies, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was especially susceptible to nitration by ONOO- in yeast cells. The activity of this enzyme was strongly inhibited upon steady-state exposure of the cells to low doses of ONOO- in yeast and in cultured rat astrocytes. Thus, ONOO- is a potent stressor in yeast capable of inducing oxidative damage and protein nitration, with GAPDH being a preferential target protein that is efficiently inactivated.


Asunto(s)
Chaperonas Moleculares/biosíntesis , Nitratos/farmacología , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Animales , Astrocitos/metabolismo , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Ácido Ditionitrobenzoico , Relación Dosis-Respuesta a Droga , Proteínas Fúngicas/efectos de los fármacos , Proteínas Fúngicas/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/efectos de los fármacos , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Proteínas HSP70 de Choque Térmico/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/toxicidad , Chaperonas Moleculares/efectos de los fármacos , Nitratos/toxicidad , Oxidantes/farmacología , Ratas , Ratas Wistar , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efectos de los fármacos , Compuestos de Sulfhidrilo/metabolismo , Reactivos de Sulfhidrilo , Tirosina/análogos & derivados , Tirosina/efectos de los fármacos , Tirosina/metabolismo , Ubiquitinas/efectos de los fármacos , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...