Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
3.
Front Physiol ; 12: 622569, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33737882

RESUMEN

Dynamic interdependencies within and between physiological systems and subsystems are key for homeostatic mechanisms to establish an optimal state of the organism. These interactions mediate regulatory responses elicited by various perturbations, such as the high-pressure baroreflex and cerebral autoregulation, alleviating the impact of orthostatic stress on cerebral hemodynamics and oxygenation. The aim of this study was to evaluate the responsiveness of the cardiorespiratory-cerebrovascular networks by capturing linear and nonlinear interdependencies to postural changes. Ten young healthy adults participated in our study. Non-invasive measurements of arterial blood pressure (from that cardiac cycle durations were derived), breath-to-breath interval, cerebral blood flow velocity (BFV, recorded by transcranial Doppler sonography), and cerebral hemodynamics (HbT, total hemoglobin content monitored by near-infrared spectroscopy) were performed for 30-min in resting state, followed by a 1-min stand-up and a 1-min sit-down period. During preprocessing, noise was filtered and the contribution of arterial blood pressure was regressed from BFV and HbT signals. Cardiorespiratory-cerebrovascular networks were reconstructed by computing pair-wise Pearson-correlation or mutual information between the resampled signals to capture their linear and/or nonlinear interdependencies, respectively. The interdependencies between cardiac, respiratory, and cerebrovascular dynamics showed a marked weakening after standing up persisting throughout the sit-down period, which could mainly be attributed to strikingly attenuated nonlinear coupling. To summarize, we found that postural changes induced topological changes in the cardiorespiratory-cerebrovascular network. The dissolution of nonlinear networks suggests that the complexity of key homeostatic mechanisms maintaining cerebral hemodynamics and oxygenation is indeed sensitive to physiological perturbations such as orthostatic stress.

4.
Bioinformatics ; 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31697324

RESUMEN

SUMMARY: Single-cell RNA-sequencing is increasingly employed to characterize disease or ageing cell subpopulation phenotypes. Despite exponential increase in data generation, systematic identification of key regulatory factors for controlling cellular phenotype to enable cell rejuvenation in disease or ageing remains a challenge. Here, we present SigHotSpotter, a computational tool to predict hotspots of signaling pathways responsible for the stable maintenance of cell subpopulation phenotypes, by integrating signaling and transcriptional networks. Targeted perturbation of these signaling hotspots can enable precise control of cell subpopulation phenotypes. SigHotSpotter correctly predicts the signaling hotspots with known experimental validations in different cellular systems. The tool is simple, user-friendly and is available as web-server or as stand-alone software. We believe SigHotSpotter will serve as a general purpose tool for the systematic prediction of signaling hotspots based on single-cell RNA-seq data, and potentiate novel cell rejuvenation strategies in the context of disease and ageing. AVAILABILITY AND IMPLEMENTATION: SigHotSpotter is at https://SigHotSpotter.lcsb.uni.lu as a web tool. Source code, example datasets and other information are available at https://gitlab.com/srikanth.ravichandran/sighotspotter. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

5.
Methods Mol Biol ; 1975: 37-51, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31062304

RESUMEN

Gene expression regulation is a fundamental cellular process that enables robust functioning of cells. How different genes interact among themselves to coordinate and maintain the overall gene expression profile observed in a cell is a key question in cellular biology. However, the immense complexity arising due to the scale and the nature of gene-gene interactions often hinders obtaining a global understanding of gene regulation. In this regard, network models of gene regulation based on gene-gene interactions, commonly referred to as gene regulatory networks (GRNs), serve important purpose of describing the overall interactions within a cell and provide a systematic approach to study their global behavior. In particular, in the context of cellular differentiation and reprogramming, where regulated changes in gene expression play a crucial role, precise knowledge of a cell type-specific GRN can enable control of the eventual cell fates with potential clinical applications. In this chapter, we describe our computational methodologies that we have tailor-made with purpose of applications to cell fate control. Briefly, we introduce the process of cellular differentiation and reprogramming, describe GRNs and common strategies to model them, and, finally, introduce the concept of determinants of cellular reprogramming and differentiation. In the Methods section, we elaborate on the different steps involved in the computational pipeline, including initial gene expression data processing, characterization of prior knowledge network, algorithm to remove non-cell type-specific edges, topological characterization of the inferred network, and Boolean network simulations to mimic cellular transitions. Finally, we provide a strategy to identify determinants of cellular reprogramming and differentiation based on the proposed computational methods.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Reprogramación Celular , Biología Computacional/métodos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Células Madre/citología , Algoritmos , Simulación por Computador , Humanos , Modelos Genéticos
6.
Sci Rep ; 8(1): 13355, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30190516

RESUMEN

Cellular differentiation is a complex process where a less specialized cell evolves into a more specialized cell. Despite the increasing research effort, identification of cell-fate determinants (transcription factors (TFs) determining cell fates during differentiation) still remains a challenge, especially when closely related cell types from a common progenitor are considered. Here, we develop SeesawPred, a web application that, based on a gene regulatory network (GRN) model of cell differentiation, can computationally predict cell-fate determinants from transcriptomics data. Unlike previous approaches, it allows the user to upload gene expression data and does not rely on pre-compiled reference data sets, enabling its application to novel differentiation systems. SeesawPred correctly predicted known cell-fate determinants on various cell differentiation examples in both mouse and human, and also performed better compared to state-of-the-art methods. The application is freely available for academic, non-profit use at http://seesaw.lcsb.uni.lu.


Asunto(s)
Diferenciación Celular , Internet , Modelos Biológicos , Programas Informáticos , Animales , Humanos
7.
BMC Syst Biol ; 11(1): 143, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29268790

RESUMEN

BACKGROUND: We propose OptPipe - a Pipeline for Optimizing Metabolic Engineering Targets, based on a consensus approach. The method generates consensus hypotheses for metabolic engineering applications by combining several optimization solutions obtained from distinct algorithms. The solutions are ranked according to several objectives, such as biomass and target production, by using the rank product tests corrected for multiple comparisons. RESULTS: OptPipe was applied in a genome-scale model of Corynebacterium glutamicum for maximizing malonyl-CoA, which is a valuable precursor for many phenolic compounds. In vivo experimental validation confirmed increased malonyl-CoA level in case of ΔsdhCAB deletion, as predicted in silico. CONCLUSIONS: A method was developed to combine the optimization solutions provided by common knockout prediction procedures and rank the suggested mutants according to the expected growth rate, production and a new adaptability measure. The implementation of the pipeline along with the complete documentation is freely available at https://github.com/AndrasHartmann/OptPipe .


Asunto(s)
Ingeniería Metabólica/métodos , Redes y Vías Metabólicas , Actinomycetales/genética , Algoritmos , Programas Informáticos
8.
Bioinformatics ; 33(13): 1953-1962, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334101

RESUMEN

MOTIVATION: The identification of genes or molecular regulatory mechanisms implicated in biological processes often requires the discretization, and in particular booleanization, of gene expression measurements. However, currently used methods mostly classify each measurement into an active or inactive state regardless of its statistical support possibly leading to downstream analysis conclusions based on spurious booleanization results. RESULTS: In order to overcome the lack of certainty inherent in current methodologies and to improve the process of discretization, we introduce RefBool, a reference-based algorithm for discretizing gene expression data. Instead of requiring each measurement to be classified as active or inactive, RefBool allows for the classification of a third state that can be interpreted as an intermediate expression of genes. Furthermore, each measurement is associated to a p- and q-value indicating the significance of each classification. Validation of RefBool on a neuroepithelial differentiation study and subsequent qualitative and quantitative comparison against 10 currently used methods supports its advantages and shows clear improvements of resulting clusterings. AVAILABILITY AND IMPLEMENTATION: The software is available as MATLAB files in the Supplementary Information and as an online repository ( https://github.com/saschajung/RefBool ). CONTACT: antonio.delsol@uni.lu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Programas Informáticos , Células Madre Embrionarias , Regulación de la Expresión Génica , Humanos , Modelos Genéticos , Análisis de Secuencia de ARN/métodos
9.
Math Biosci ; 279: 83-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27424949

RESUMEN

This article considers a new mathematical model for the description of multiphasic cell growth. A linear hybrid model is proposed and it is shown that the two-parameter logistic model with switching parameters can be represented by a Switched affine AutoRegressive model with eXogenous inputs (SARX). The growth phases are modeled as continuous processes, while the switches between the phases are considered to be discrete events triggering a change in growth parameters. This framework provides an easily interpretable model, because the intrinsic behavior is the same along all the phases but with a different parameterization. Another advantage of the hybrid model is that it offers a simpler alternative to recent more complex nonlinear models. The growth phases and parameters from datasets of different microorganisms exhibiting multiphasic growth behavior such as Lactococcus lactis, Streptococcus pneumoniae, and Saccharomyces cerevisiae, were inferred. The segments and parameters obtained from the growth data are close to the ones determined by the experts. The fact that the model could explain the data from three different microorganisms and experiments demonstrates the strength of this modeling approach for multiphasic growth, and presumably other processes consisting of multiple phases.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Ciclo Celular , Modelos Lineales
10.
J Biotechnol ; 219: 126-41, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26724578

RESUMEN

Kinetic models of cellular metabolism are important tools for the rational design of metabolic engineering strategies and to explain properties of complex biological systems. The recent developments in high-throughput experimental data are leading to new computational approaches for building kinetic models of metabolism. Herein, we briefly survey the available databases, standards and software tools that can be applied for kinetic models of metabolism. In addition, we give an overview about recently developed ordinary differential equations (ODE)-based kinetic models of metabolism and some of the main applications of such models are illustrated in guiding metabolic engineering design. Finally, we review the kinetic modeling approaches of large-scale networks that are emerging, discussing their main advantages, challenges and limitations.


Asunto(s)
Modelos Biológicos , Biología de Sistemas/métodos , Bacterias/metabolismo , Hongos/metabolismo , Cinética , Ingeniería Metabólica , Programas Informáticos
11.
Comput Biol Med ; 63: 301-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25248561

RESUMEN

The aim of inverse modeling is to capture the systems׳ dynamics through a set of parameterized Ordinary Differential Equations (ODEs). Parameters are often required to fit multiple repeated measurements or different experimental conditions. This typically leads to a multi-objective optimization problem that can be formulated as a non-convex optimization problem. Modeling of glucose utilization of Lactococcus lactis bacteria is considered using in vivo Nuclear Magnetic Resonance (NMR) measurements in perturbation experiments. We propose an ODE model based on a modified time-varying exponential decay that is flexible enough to model several different experimental conditions. The starting point is an over-parameterized non-linear model that will be further simplified through an optimization procedure with regularization penalties. For the parameter estimation, a stochastic global optimization method, particle swarm optimization (PSO) is used. A regularization is introduced to the identification, imposing that parameters should be the same across several experiments in order to identify a general model. On the remaining parameter that varies across the experiments a function is fit in order to be able to predict new experiments for any initial condition. The method is cross-validated by fitting the model to two experiments and validating the third one. Finally, the proposed model is integrated with existing models of glycolysis in order to reconstruct the remaining metabolites. The method was found useful as a general procedure to reduce the number of parameters of unidentifiable and over-parameterized models, thus supporting feature selection methods for parametric models.


Asunto(s)
Glucosa/metabolismo , Lactococcus lactis/metabolismo , Modelos Biológicos , Espectroscopía de Resonancia Magnética
12.
Mol Biosyst ; 10(3): 628-39, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24413179

RESUMEN

Biomedical research and biotechnological production are greatly benefiting from the results provided by the development of dynamic models of microbial metabolism. Although several kinetic models of Lactococcus lactis (a Lactic Acid Bacterium (LAB) commonly used in the dairy industry) have been developed so far, most of them are simplified and focus only on specific metabolic pathways. Therefore, the application of mathematical models in the design of an engineering strategy for the production of industrially important products by L. lactis has been very limited. In this work, we extend the existing kinetic model of L. lactis central metabolism to include industrially relevant production pathways such as mannitol and 2,3-butanediol. In this way, we expect to study the dynamics of metabolite production and make predictive simulations in L. lactis. We used a system of ordinary differential equations (ODEs) with approximate Michaelis-Menten-like kinetics for each reaction, where the parameters were estimated from multivariate time-series metabolite concentrations obtained by our team through in vivo Nuclear Magnetic Resonance (NMR). The results show that the model captures observed transient dynamics when validated under a wide range of experimental conditions. Furthermore, we analyzed the model using global perturbations, which corroborate experimental evidence about metabolic responses upon enzymatic changes. These include that mannitol production is very sensitive to lactate dehydrogenase (LDH) in the wild type (W.T.) strain, and to mannitol phosphoenolpyruvate: a phosphotransferase system (PTS(Mtl)) in a LDH mutant strain. LDH reduction has also a positive control on 2,3-butanediol levels. Furthermore, it was found that overproduction of mannitol-1-phosphate dehydrogenase (MPD) in a LDH/PTS(Mtl) deficient strain can increase the mannitol levels. The results show that this model has prediction capability over new experimental conditions and offers promising possibilities to elucidate the effect of alterations in the main metabolism of L. lactis, with application in strain optimization.


Asunto(s)
Butileno Glicoles/metabolismo , Lactococcus lactis/metabolismo , Manitol/metabolismo , Modelos Biológicos , Análisis por Conglomerados , Cinética , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Lactococcus lactis/genética , Redes y Vías Metabólicas , Mutación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA