Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 11904, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30093689

RESUMEN

The entire chemical modification repertoire of yeast ribosomal RNAs and the enzymes responsible for it have recently been identified. Nonetheless, in most cases the precise roles played by these chemical modifications in ribosome structure, function and regulation remain totally unclear. Previously, we demonstrated that yeast Rrp8 methylates m1A645 of 25S rRNA in yeast. Here, using mung bean nuclease protection assays in combination with quantitative RP-HPLC and primer extension, we report that 25S/28S rRNA of S. pombe, C. albicans and humans also contain a single m1A methylation in the helix 25.1. We characterized nucleomethylin (NML) as a human homolog of yeast Rrp8 and demonstrate that NML catalyzes the m1A1322 methylation of 28S rRNA in humans. Our in vivo structural probing of 25S rRNA, using both DMS and SHAPE, revealed that the loss of the Rrp8-catalyzed m1A modification alters the conformation of domain I of yeast 25S rRNA causing translation initiation defects detectable as halfmers formation, likely because of incompetent loading of 60S on the 43S-preinitiation complex. Quantitative proteomic analysis of the yeast Δrrp8 mutant strain using 2D-DIGE, revealed that loss of m1A645 impacts production of specific set of proteins involved in carbohydrate metabolism, translation and ribosome synthesis. In mouse, NML has been characterized as a metabolic disease-associated gene linked to obesity. Our findings in yeast also point to a role of Rrp8 in primary metabolism. In conclusion, the m1A modification is crucial for maintaining an optimal 60S conformation, which in turn is important for regulating the production of key metabolic enzymes.


Asunto(s)
Adenosina/análogos & derivados , Metiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Adenosina/metabolismo , Secuencia de Bases , Electroforesis en Gel Bidimensional , Células HCT116 , Humanos , Metilación , Metiltransferasas/genética , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformación de Ácido Nucleico , Dominios Proteicos , Proteína O-Metiltransferasa , Proteómica/métodos , ARN Ribosómico/química , ARN Ribosómico/genética , Proteínas de Unión al ARN , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Grandes/química , Subunidades Ribosómicas Grandes/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
PLoS One ; 12(3): e0173940, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28278232

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0168873.].

3.
PLoS One ; 11(12): e0168873, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28033325

RESUMEN

Ribosomes are large ribonucleoprotein complexes that are fundamental for protein synthesis. Ribosomes are ribozymes because their catalytic functions such as peptidyl transferase and peptidyl-tRNA hydrolysis depend on the rRNA. rRNA is a heterogeneous biopolymer comprising of at least 112 chemically modified residues that are believed to expand its topological potential. In the present study, we established a comprehensive modification profile of Saccharomyces cerevisiae's 18S and 25S rRNA using a high resolution Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). A combination of mung bean nuclease assay, rDNA point mutants and snoRNA deletions allowed us to systematically map all ribose and base modifications on both rRNAs to a single nucleotide resolution. We also calculated approximate molar levels for each modification using their UV (254nm) molar response factors, showing sub-stoichiometric amount of modifications at certain residues. The chemical nature, their precise location and identification of partial modification will facilitate understanding the precise role of these chemical modifications, and provide further evidence for ribosome heterogeneity in eukaryotes.


Asunto(s)
Proteínas de Plantas/metabolismo , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosa/metabolismo , Saccharomyces cerevisiae/genética , Endonucleasas Específicas del ADN y ARN con un Solo Filamento/metabolismo , Secuencia de Bases , Cromatografía de Fase Inversa , Metilación , Mutación Puntual , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...