Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; : e0004824, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712944

RESUMEN

Whole genome sequencing has revealed that the genome of Staphylococcus aureus possesses an uncharacterized 5-gene operon (SAOUHSC_00088-00092 in strain 8325 genome) that encodes factors with functions related to polysaccharide biosynthesis and export, indicating the existence of a new extracellular polysaccharide species. We designate this locus as ssc for staphylococcal surface carbohydrate. We found that the ssc genes were weakly expressed and highly repressed by the global regulator MgrA. To characterize Ssc, Ssc was heterologously expressed in Escherichia coli and extracted by heat treatment. Ssc was also conjugated to AcrA from Campylobacter jejuni in E. coli using protein glycan coupling technology (PGCT). Analysis of the heat-extracted Ssc and the purified Ssc-AcrA glycoconjugate by tandem mass spectrometry revealed that Ssc is likely a polymer consisting of N-acetylgalactosamine. We further demonstrated that the expression of the ssc genes in S. aureus affected phage adsorption and susceptibility, suggesting that Ssc is surface-exposed. IMPORTANCE: Surface polysaccharides play crucial roles in the biology and virulence of bacterial pathogens. Staphylococcus aureus produces four major types of polysaccharides that have been well-characterized. In this study, we identified a new surface polysaccharide containing N-acetylgalactosamine (GalNAc). This marks the first report of GalNAc-containing polysaccharide in S. aureus. Our discovery lays the groundwork for further investigations into the chemical structure, surface location, and role in pathogenesis of this new polysaccharide.

2.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 735-751, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38279966

RESUMEN

Advanced glycation end products (AGEs), formed via the Maillard reaction (MR) during processing of foods, have been implicated in inflammatory and degenerative diseases in human beings. Cellular damage is primarily caused by AGE binding with the receptor for AGEs (RAGE) on cell membranes. An isoform of RAGE, soluble RAGE (sRAGE), acts as a decoy receptor binding circulating AGEs preventing cellular activation. Pet food manufacturing involves processing methods similar to human food processing that may increase dietary AGEs (dAGEs). We hypothesized that diet, plasma and urine AGEs, and serum sRAGE concentrations would differ between thermally processed diets. This study examined the association of four differently processed diets: ultra-processed canned wet food (WF); ultra-processed dry food (DF); moderately processed air-dried food (ADF) and minimally processed mildly cooked food (MF) on total plasma levels of the AGEs, carboxymethyllysine (CML), carboxyethyllysine (CEL), methylglyoxal hydroimidazolone-1, glyoxal hydroimidazolone-1, argpyrimidine, urine CML, CEL and lysinoalanine, and serum sRAGE concentration. Ultra-high-performance liquid chromatography-tandem mass spectrometry was used to measure AGEs. sRAGE concentration was measured using a commercial canine-specific enzyme-linked immunosorbent assay kit. Total dAGEs (mg/100 kcal as fed) were higher in WF than in other diets. Plasma total AGEs (nM/50 µL) were significantly higher with WF, with no difference found between DF, ADF, and MF; however, ADF was significantly higher than MF. Urine CML (nmol AGEs/mmol creatinine) was significantly higher with DF than with WF and MF. There were no significant differences in total urine AGEs or serum sRAGE concentration between diets. In conclusion, different methods of processing pet foods are associated with varied quantities of AGEs influencing total plasma AGE concentration in healthy dogs. Serum sRAGE concentration did not vary across diets but differences in total AGE/sRAGE ratio were observed between MF and WF and, ADF and DF.


Asunto(s)
Alimentación Animal , Dieta , Manipulación de Alimentos , Productos Finales de Glicación Avanzada , Receptor para Productos Finales de Glicación Avanzada , Animales , Productos Finales de Glicación Avanzada/sangre , Productos Finales de Glicación Avanzada/orina , Perros/orina , Perros/sangre , Alimentación Animal/análisis , Receptor para Productos Finales de Glicación Avanzada/sangre , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Dieta/veterinaria , Masculino , Femenino
3.
Glycobiology ; 34(2)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38015989

RESUMEN

Heparan sulfate (HS) is a linear polysaccharide that plays a key role in cellular signaling networks. HS functions are regulated by its 6-O-sulfation, which is catalyzed by three HS 6-O-sulfotransferases (HS6STs). Notably, HS6ST2 is mainly expressed in the brain and HS6ST2 mutations are linked to brain disorders, but the underlying mechanisms remain poorly understood. To determine the role of Hs6st2 in the brain, we carried out a series of molecular and behavioral assessments on Hs6st2 knockout mice. We first carried out strong anion exchange-high performance liquid chromatography and found that knockout of Hs6st2 moderately decreases HS 6-O-sulfation levels in the brain. We then assessed body weights and found that Hs6st2 knockout mice exhibit increased body weight, which is associated with abnormal metabolic pathways. We also performed behavioral tests and found that Hs6st2 knockout mice showed memory deficits, which recapitulate patient clinical symptoms. To determine the molecular mechanisms underlying the memory deficits, we used RNA sequencing to examine transcriptomes in two memory-related brain regions, the hippocampus and cerebral cortex. We found that knockout of Hs6st2 impairs transcriptome in the hippocampus, but only mildly in the cerebral cortex. Furthermore, the transcriptome changes in the hippocampus are enriched in dendrite and synapse pathways. We also found that knockout of Hs6st2 decreases HS levels and impairs dendritic spines in hippocampal CA1 pyramidal neurons. Taken together, our study provides novel molecular and behavioral insights into the role of Hs6st2 in the brain, which facilitates a better understanding of HS6ST2 and HS-linked brain disorders.


Asunto(s)
Encefalopatías , Discapacidad Intelectual , Sulfotransferasas , Animales , Humanos , Ratones , Espinas Dendríticas/metabolismo , Heparitina Sulfato/metabolismo , Hipocampo/metabolismo , Trastornos de la Memoria , Ratones Noqueados , Neuronas/metabolismo , Compuestos de Pralidoxima , Sulfotransferasas/genética , Sulfotransferasas/metabolismo
4.
Mol Microbiol ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37972006

RESUMEN

Streptococcus mutans is commonly associated with dental caries and the ability to form biofilms is essential for its pathogenicity. We recently identified the Pgf glycosylation machinery of S. mutans, responsible for the post-translational modification of the surface-associated adhesins Cnm and WapA. Since the four-gene pgf operon (pgfS-pgfM1-pgfE-pgfM2) is part of the S. mutans core genome, we hypothesized that the scope of the Pgf system goes beyond Cnm and WapA glycosylation. In silico analyses and tunicamycin sensitivity assays suggested a functional overlap between the Pgf machinery and the rhamnose-glucose polysaccharide synthesis pathway. Phenotypic characterization of pgf mutants (ΔpgfS, ΔpgfE, ΔpgfM1, ΔpgfM2, and Δpgf) revealed that the Pgf system is important for biofilm formation, surface charge, membrane stability, and survival in human saliva. Moreover, deletion of the entire pgf operon (Δpgf strain) resulted in significantly impaired colonization in a rat oral colonization model. Using Cnm as a model, we showed that Cnm is heavily modified with N-acetyl hexosamines but it becomes heavily phosphorylated with the inactivation of the PgfS glycosyltransferase, suggesting a crosstalk between these two post-translational modification mechanisms. Our results revealed that the Pgf machinery contributes to multiple aspects of S. mutans pathobiology that may go beyond Cnm and WapA glycosylation.

5.
J Virol ; 97(11): e0090623, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37843369

RESUMEN

IMPORTANCE: It is well known that influenza A viruses (IAV) initiate host cell infection by binding to sialic acid, a sugar molecule present at the ends of various sugar chains called glycoconjugates. These sugar chains can vary in chain length, structure, and composition. However, it remains unknown if IAV strains preferentially bind to sialic acid on specific glycoconjugate type(s) for host cell infection. Here, we utilized CRISPR gene editing to abolish sialic acid on different glycoconjugate types in human lung cells, and evaluated human versus avian IAV infections. Our studies show that both human and avian IAV strains can infect human lung cells by utilizing any of the three major sialic acid-containing glycoconjugate types, specifically N-glycans, O-glycans, and glycolipids. Interestingly, simultaneous elimination of sialic acid on all three major glycoconjugate types in human lung cells dramatically decreased human IAV infection, yet had little effect on avian IAV infection. These studies show that avian IAV strains effectively utilize other less prevalent glycoconjugates for infection, whereas human IAV strains rely on a limited repertoire of glycoconjugate types. The remarkable ability of avian IAV strains to utilize diverse glycoconjugate types may allow for easy transmission into new host species.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Pulmón , Receptores de Superficie Celular , Animales , Humanos , Proteínas Portadoras/metabolismo , Glicoconjugados/metabolismo , Virus de la Influenza A/metabolismo , Pulmón/virología , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/metabolismo , Azúcares/metabolismo , Gripe Aviar/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Virales/metabolismo
6.
J Am Chem Soc ; 145(38): 20749-20754, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37722679

RESUMEN

Nature is rich with examples of highly specialized biological materials produced by organisms for functions, including defense, hunting, and protection. Along these lines, velvet worms (Onychophora) expel a protein-based slime used for hunting and defense that upon shearing and dehydration forms fibers as stiff as thermoplastics. These fibers can dissolve back into their precursor proteins in water, after which they can be drawn into new fibers, providing biological inspiration to design recyclable materials. Elevated phosphorus content in velvet worm slime was previously observed and putatively ascribed to protein phosphorylation. Here, we show instead that phosphorus is primarily present as phosphonate moieties in the slime of distantly related velvet worm species. Using high-resolution nuclear magnetic resonance (NMR), natural abundance dynamic nuclear polarization (DNP), and mass spectrometry (MS), we demonstrate that 2-aminoethyl phosphonate (2-AEP) is associated with glycans linked to large slime proteins, while transcriptomic analyses confirm the expression of 2-AEP synthesizing enzymes in slime glands. The evolutionary conservation of this rare protein modification suggests an essential functional role of phosphonates in velvet worm slime and should stimulate further study of the function of this unusual chemical modification in nature.


Asunto(s)
Organofosfonatos , Proteínas , Proteínas/química , Espectroscopía de Resonancia Magnética , Fósforo , Espectrometría de Masas
7.
bioRxiv ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37577488

RESUMEN

Cholera toxin (CT) is the etiological agent of cholera. Here we report that multiple classes of fucosylated glycoconjugates function in CT binding and intoxication of intestinal epithelial cells. In Colo205 cells, knockout of B3GNT5, the enzyme required for synthesis of lacto- and neolacto-series glycosphingolipids (GSLs), reduces CT binding but sensitizes cells to intoxication. Overexpressing B3GNT5 to generate more fucosylated GSLs confers protection against intoxication, indicating that fucosylated GSLs act as decoy receptors for CT. Knockout (KO) of B3GALT5 causes increased production of fucosylated O-linked and N-linked glycoproteins, and leads to increased CT binding and intoxication. Knockout of B3GNT5 in B3GALT5 KO cells eliminates production of fucosylated GSLs but increases intoxication, identifying fucosylated glycoproteins as functional receptors for CT. These findings provide insight into molecular determinants regulating CT sensitivity of host cells.

8.
J Am Soc Mass Spectrom ; 34(10): 2127-2135, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37621000

RESUMEN

Glycosidic linkages in oligosaccharides play essential roles in determining their chemical properties and biological activities. MSn has been widely used to infer glycosidic linkages but requires a substantial amount of starting material, which limits its application. In addition, there is a lack of rigorous research on what MSn protocols are proper for characterizing glycosidic linkages. In this work, to deliver high-quality experimental data and analysis results, we propose a machine learning-based framework to establish appropriate MSn protocols and build effective data analysis methods. We demonstrate the proof-of-principle by applying our approach to elucidate sialic acid linkages (α2'-3' and α2'-6') in a set of sialyllactose standards and NIST sialic acid-containing N-glycans as well as identify several protocol configurations for producing high-quality experimental data. Our companion data analysis method achieves nearly 100% accuracy in classifying α2'-3' vs α2'-6' using MS5, MS4, MS3, or even MS2 spectra alone. The ability to determine glycosidic linkages using MS2 or MS3 is significant as it requires substantially less sample, enabling linkage analysis for quantity-limited natural glycans and synthesized materials, as well as shortens the overall experimental time. MS2 is also more amenable than MS3/4/5 to automation when coupled to direct infusion or LC-MS. Additionally, our method can predict the ratio of α2'-3' and α2'-6' in a mixture with 8.6% RMSE (root-mean-square error) across data sets using MS5 spectra. We anticipate that our framework will be generally applicable to analysis of other glycosidic linkages.


Asunto(s)
Ácido N-Acetilneuramínico , Polisacáridos , Ácido N-Acetilneuramínico/química , Polisacáridos/análisis , Espectrometría de Masas/métodos , Oligosacáridos/química , Cromatografía Liquida
9.
Glycobiology ; 33(3): 245-259, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36637425

RESUMEN

Streptococcus mutans is a key pathogen associated with dental caries and is often implicated in infective endocarditis. This organism forms robust biofilms on tooth surfaces and can use collagen-binding proteins (CBPs) to efficiently colonize collagenous substrates, including dentin and heart valves. One of the best characterized CBPs of S. mutans is Cnm, which contributes to adhesion and invasion of oral epithelial and heart endothelial cells. These virulence properties were subsequently linked to post-translational modification (PTM) of the Cnm threonine-rich repeat region by the Pgf glycosylation machinery, which consists of 4 enzymes: PgfS, PgfM1, PgfE, and PgfM2. Inactivation of the S. mutans pgf genes leads to decreased collagen binding, reduced invasion of human coronary artery endothelial cells, and attenuated virulence in the Galleria mellonella invertebrate model. The present study aimed to better understand Cnm glycosylation and characterize the predicted 4-epimerase, PgfE. Using a truncated Cnm variant containing only 2 threonine-rich repeats, mass spectrometric analysis revealed extensive glycosylation with HexNAc2. Compositional analysis, complemented with lectin blotting, identified the HexNAc2 moieties as GlcNAc and GalNAc. Comparison of PgfE with the other S. mutans 4-epimerase GalE through structural modeling, nuclear magnetic resonance, and capillary electrophoresis demonstrated that GalE is a UDP-Glc-4-epimerase, while PgfE is a GlcNAc-4-epimerase. While PgfE exclusively participates in protein O-glycosylation, we found that GalE affects galactose metabolism and cell division. This study further emphasizes the importance of O-linked protein glycosylation and carbohydrate metabolism in S. mutans and identifies the PTM modifications of the key CBP, Cnm.


Asunto(s)
Adhesinas Bacterianas , Caries Dental , Humanos , Glicosilación , Adhesinas Bacterianas/genética , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Adhesión Bacteriana/fisiología , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Células Endoteliales/metabolismo , Proteínas Portadoras/genética , Colágeno/genética , División Celular
10.
Methods Mol Biol ; 2597: 177-186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36374422

RESUMEN

The compositional and structural analysis of GAGs is challenging due to their heterogenous structures. Strong anion exchange (SAX) HPLC can aid in the compositional analysis of GAGs and can separate complex mixtures based on charge and degree of sulfation. Herein we describe the digestion and release of GAGs from tissue, and the compositional analysis using SAX-HPLC.


Asunto(s)
Glicosaminoglicanos , Glicosaminoglicanos/química , Cromatografía por Intercambio Iónico , Cromatografía Líquida de Alta Presión , Aniones
11.
Nature ; 606(7915): 769-775, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676476

RESUMEN

Adaptive immune components are thought to exert non-overlapping roles in antimicrobial host defence, with antibodies targeting pathogens in the extracellular environment and T cells eliminating infection inside cells1,2. Reliance on antibodies for vertically transferred immunity from mothers to babies may explain neonatal susceptibility to intracellular infections3,4. Here we show that pregnancy-induced post-translational antibody modification enables protection against the prototypical intracellular pathogen Listeria monocytogenes. Infection susceptibility was reversed in neonatal mice born to preconceptually primed mothers possessing L. monocytogenes-specific IgG or after passive transfer of antibodies from primed pregnant, but not virgin, mice. Although maternal B cells were essential for producing IgGs that mediate vertically transferred protection, they were dispensable for antibody acquisition of protective function, which instead required sialic acid acetyl esterase5 to deacetylate terminal sialic acid residues on IgG variable-region N-linked glycans. Deacetylated L. monocytogenes-specific IgG protected neonates through the sialic acid receptor CD226,7, which suppressed IL-10 production by B cells leading to antibody-mediated protection. Consideration of the maternal-fetal dyad as a joined immunological unit reveals protective roles for antibodies against intracellular infection and fine-tuned adaptations to enhance host defence during pregnancy and early life.


Asunto(s)
Inmunidad Materno-Adquirida , Inmunoglobulina G , Espacio Intracelular , Listeria monocytogenes , Madres , Embarazo , Acetilesterasa , Animales , Animales Recién Nacidos , Linfocitos B , Femenino , Inmunidad Materno-Adquirida/inmunología , Inmunoglobulina G/inmunología , Interleucina-10/biosíntesis , Espacio Intracelular/inmunología , Espacio Intracelular/microbiología , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Listeriosis/prevención & control , Ratones , Ácido N-Acetilneuramínico/metabolismo , Embarazo/inmunología , Lectina 2 Similar a Ig de Unión al Ácido Siálico , Linfocitos T
12.
JCI Insight ; 6(14)2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34291736

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a pandemic. Severe disease is associated with dysfunction of multiple organs, but some infected cells do not express ACE2, the canonical entry receptor for SARS-CoV-2. Here, we report that the C-type lectin receptor L-SIGN interacted in a Ca2+-dependent manner with high-mannose-type N-glycans on the SARS-CoV-2 spike protein. We found that L-SIGN was highly expressed on human liver sinusoidal endothelial cells (LSECs) and lymph node lymphatic endothelial cells but not on blood endothelial cells. Using high-resolution confocal microscopy imaging, we detected SARS-CoV-2 viral proteins within the LSECs from liver autopsy samples from patients with COVID-19. We found that both pseudo-typed virus enveloped with SARS-CoV-2 spike protein and authentic SARS-CoV-2 virus infected L-SIGN-expressing cells relative to control cells. Moreover, blocking L-SIGN function reduced CoV-2-type infection. These results indicate that L-SIGN is a receptor for SARS-CoV-2 infection. LSECs are major sources of the clotting factors vWF and factor VIII (FVIII). LSECs from liver autopsy samples from patients with COVID-19 expressed substantially higher levels of vWF and FVIII than LSECs from uninfected liver samples. Our data demonstrate that L-SIGN is an endothelial cell receptor for SARS-CoV-2 that may contribute to COVID-19-associated coagulopathy.


Asunto(s)
COVID-19 , Capilares , Moléculas de Adhesión Celular/metabolismo , Células Endoteliales , Lectinas Tipo C/metabolismo , Hígado/irrigación sanguínea , Vasos Linfáticos , Receptores de Superficie Celular/metabolismo , SARS-CoV-2/fisiología , COVID-19/metabolismo , COVID-19/patología , COVID-19/virología , Capilares/metabolismo , Capilares/patología , Capilares/virología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/virología , Perfilación de la Expresión Génica/métodos , Humanos , Hígado/patología , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Vasos Linfáticos/virología , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus
13.
Biotechnol Biofuels ; 14(1): 142, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158109

RESUMEN

BACKGROUND: In plants, a large diversity of polysaccharides comprise the cell wall. Each major type of plant cell wall polysaccharide, including cellulose, hemicellulose, and pectin, has distinct structures and functions that contribute to wall mechanics and influence plant morphogenesis. In recent years, pectin valorization has attracted much attention due to its expanding roles in biomass deconstruction, food and material science, and environmental remediation. However, pectin utilization has been limited by our incomplete knowledge of its structure. Herein, we present a workflow of principles relevant for the characterization of polysaccharide primary structure using nature's most complex polysaccharide, rhamnogalacturonan-II (RG-II), as a model. RESULTS: We outline how to isolate RG-II from celery and duckweed cell walls and from red wine using chemical or enzymatic treatments coupled with size-exclusion chromatography. From there, we applied mass spectrometry (MS)-based techniques to determine the glycosyl residue and linkage compositions of the intact RG-II and derived oligosaccharides including special considerations for labile monosaccharides. In doing so, we demonstrated that in the duckweed Wolffiella repanda the arabinopyranosyl (Arap) residue of side chain B is substituted at O-2 with rhamnose. We used electrospray-MS techniques to identify non-glycosyl modifications including methyl-ethers, methyl-esters, and acetyl-esters on RG-II-derived oligosaccharides. We then showed the utility of proton nuclear magnetic resonance spectroscopy (1H-NMR) to investigate the structure of intact RG-II and to complement the RG-II dimerization studies performed using size-exclusion chromatography. CONCLUSIONS: The complexity of pectic polysaccharide structures has hampered efforts aimed at their valorization. In this work, we used RG-II as a model to demonstrate the steps necessary to isolate and characterize polysaccharides using chromatographic, MS, and NMR techniques. The principles can be applied to the characterization of other saccharide structures and will help inform researchers on how saccharide structure relates to functional properties in the future.

14.
Front Endocrinol (Lausanne) ; 12: 658439, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34108935

RESUMEN

Offspring of obese mothers suffer higher risks of type 2 diabetes due to increased adiposity and decreased ß cell function. To date, the sex-differences in offspring islet insulin secretion during early life has not been evaluated extensively, particularly prior to weaning at postnatal day 21 (P21). To determine the role of maternal obesity on offspring islet insulin secretion, C57BL/6J female dams were fed chow or western diet from 4 weeks prior to mating to induce maternal obesity. First, offspring of chow-fed and obese dams were evaluated on postnatal day 21 (P21) prior to weaning for body composition, glucose and insulin tolerance, and islet phasic insulin-secretion. Compared to same-sex controls, both male and female P21 offspring born to obese dams (MatOb) had higher body adiposity and exhibited sex-specific differences in glucose tolerance and insulin secretion. The male MatOb offspring developed the highest extent of glucose intolerance and lowest glucose-induced insulin secretion. In contrast, P21 female offspring of obese dams had unimpaired insulin secretion. Using SAX-HPLC, we found that male MatOb had a decrease in pancreatic heparan sulfate glycosaminoglycan, which is a macromolecule critical for islet health. Notably, 8-weeks-old offspring of obese dams continued to exhibit a similar pattern of sex-differences in glucose intolerance and decreased islet insulin secretion. Overall, our study suggests that maternal obesity induces sex-specific changes to pancreatic HSG in offspring and a lasting effect on offspring insulin secretion, leading to the sex-differences in glucose intolerance.


Asunto(s)
Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Obesidad Materna/metabolismo , Páncreas/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Adiposidad , Animales , Dieta Alta en Grasa , Femenino , Glucosa , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/fisiopatología , Glicosaminoglicanos/efectos adversos , Humanos , Secreción de Insulina , Masculino , Ratones Endogámicos C57BL , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Factores Sexuales
15.
Sci Adv ; 7(10)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33674306

RESUMEN

Severe traumatic brain injury (sTBI) survivors experience permanent functional disabilities due to significant volume loss and the brain's poor capacity to regenerate. Chondroitin sulfate glycosaminoglycans (CS-GAGs) are key regulators of growth factor signaling and neural stem cell homeostasis in the brain. However, the efficacy of engineered CS (eCS) matrices in mediating structural and functional recovery chronically after sTBI has not been investigated. We report that neurotrophic factor functionalized acellular eCS matrices implanted into the rat M1 region acutely after sTBI significantly enhanced cellular repair and gross motor function recovery when compared to controls 20 weeks after sTBI. Animals subjected to M2 region injuries followed by eCS matrix implantations demonstrated the significant recovery of "reach-to-grasp" function. This was attributed to enhanced volumetric vascularization, activity-regulated cytoskeleton (Arc) protein expression, and perilesional sensorimotor connectivity. These findings indicate that eCS matrices implanted acutely after sTBI can support complex cellular, vascular, and neuronal circuit repair chronically after sTBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Células-Madre Neurales , Animales , Encéfalo , Lesiones Traumáticas del Encéfalo/terapia , Ratas , Regeneración
16.
Haematologica ; 106(3): 759-769, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32303557

RESUMEN

Sialic acid is a common terminal residue of glycans on proteins and acidic sphingolipids such as gangliosides and has important biological functions. The sialylation process is controlled by more than 20 different sialyltransferases, many of which exhibit overlapping functions. Thus, it is difficult to determine the overall biological function of sialylation by targeted deletion of individual sialyltransferases. To address this issue, we established a mouse line with the Slc35a1 gene flanked by loxP sites. Slc35a1 encodes the cytidine-5'-monophosphate (CMP)-sialic acid transporter that transports CMP-sialic acid from the cytoplasm into the Golgi apparatus for sialylation. Here we report our study regarding the role of sialylation on megakaryocytes and platelets using a mouse line with significantly reduced sialylation in megakaryocytes and platelets (Plt Slc35a1­ /­). The major phenotype of Plt Slc35a1­/­ mice was thrombocytopenia. The number of bone marrow megakaryocytes in Plt Slc35a1­/­ mice was reduced, and megakaryocyte maturation was also impaired. In addition, an increased number of desialylated platelets was cleared by Küpffer cells in the liver of Plt Slc35a1­/­ mice. This study provides new insights into the role of sialylation in platelet homeostasis and the mechanisms of thrombocytopenia in diseases associated with platelet desialylation, such as immune thrombocytopenia and a rare congenital disorder of glycosylation (CDG), SLC35A1-CDG, which is caused by SLC35A1 mutations.


Asunto(s)
Proteínas de Transporte de Nucleótidos , Trombocitopenia , Plaquetas , Humanos , Hígado , Ácido N-Acetilneuramínico , Proteínas de Transporte de Nucleótidos/genética , Trombocitopenia/genética , Trombopoyesis
17.
Glycobiology ; 31(4): 410-424, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33135055

RESUMEN

The emergence of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created the need for development of new therapeutic strategies. Understanding the mode of viral attachment, entry and replication has become a key aspect of such interventions. The coronavirus surface features a trimeric spike (S) protein that is essential for viral attachment, entry and membrane fusion. The S protein of SARS-CoV-2 binds to human angiotensin converting enzyme 2 (hACE2) for entry. Herein, we describe glycomic and glycoproteomic analysis of hACE2 expressed in HEK293 cells. We observed high glycan occupancy (73.2 to 100%) at all seven possible N-glycosylation sites and surprisingly detected one novel O-glycosylation site. To deduce the detailed structure of glycan epitopes on hACE2 that may be involved in viral binding, we have characterized the terminal sialic acid linkages, the presence of bisecting GlcNAc and the pattern of N-glycan fucosylation. We have conducted extensive manual interpretation of each glycopeptide and glycan spectrum, in addition to using bioinformatics tools to validate the hACE2 glycosylation. Our elucidation of the site-specific glycosylation and its terminal orientations on the hACE2 receptor, along with the modeling of hACE2 glycosylation sites can aid in understanding the intriguing virus-receptor interactions and assist in the development of novel therapeutics to prevent viral entry. The relevance of studying the role of ACE2 is further increased due to some recent reports about the varying ACE2 dependent complications with regard to age, sex, race and pre-existing conditions of COVID-19 patients.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , Polisacáridos/metabolismo , SARS-CoV-2/fisiología , COVID-19/virología , Glicómica , Glicosilación , Células HEK293 , Humanos , Unión Proteica , Conformación Proteica
18.
Plant Cell ; 32(7): 2367-2382, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32354790

RESUMEN

Xylans are a major component of plant cell walls. O-Acetyl moieties are the dominant backbone substituents of glucuronoxylan in dicots and play a major role in the polymer-polymer interactions that are crucial for wall architecture and normal plant development. Here, we describe the biochemical, structural, and mechanistic characterization of Arabidopsis (Arabidopsis thaliana) xylan O-acetyltransferase 1 (XOAT1), a member of the plant-specific Trichome Birefringence Like (TBL) family. Detailed characterization of XOAT1-catalyzed reactions by real-time NMR confirms that it exclusively catalyzes the 2-O-acetylation of xylan, followed by nonenzymatic acetyl migration to the O-3 position, resulting in products that are monoacetylated at both O-2 and O-3 positions. In addition, we report the crystal structure of the catalytic domain of XOAT1, which adopts a unique conformation that bears some similarities to the α/ß/α topology of members of the GDSL-like lipase/acylhydrolase family. Finally, we use a combination of biochemical analyses, mutagenesis, and molecular simulations to show that XOAT1 catalyzes xylan acetylation through formation of an acyl-enzyme intermediate, Ac-Ser-216, by a double displacement bi-bi mechanism involving a Ser-His-Asp catalytic triad and unconventionally uses an Arg residue in the formation of an oxyanion hole.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Polisacáridos/metabolismo , Acetilación , Acetiltransferasas/química , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arginina/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Células HEK293 , Humanos , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana , Modelos Moleculares , Mutación , Conformación Proteica , Xilanos/metabolismo
19.
Glycobiology ; 30(10): 774-786, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32248230

RESUMEN

Human breast milk is an incredibly rich and complex biofluid composed of proteins, lipids and complex carbohydrates, including a diverse repertoire of free human milk oligosaccharides (HMOs). Strikingly, HMOs are not digested by the infant but function as prebiotics for bacterial strains associated with numerous benefits. Considering the broad variety of beneficial effects of HMOs, and the vast number of factors that affect breast milk composition, the analysis of HMO diversity and complexity is of utmost relevance. Using human milk samples from a cohort of Bangladeshi mothers participating in a study on malnutrition and stunting in children, we have characterized breast milk oligosaccharide composition by means of permethylation followed by liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-MS/MS) analysis. This approach identified over 100 different glycoforms and showed a wide diversity of milk composition, with a predominance of fucosylated and sialylated HMOs over nonmodified HMOs. We observed that these samples contain on average 80 HMOs, with the highest permethylated masses detected being >5000 mass units. Here we report an easily implemented method developed for the separation, characterization and relative quantitation of large arrays of HMOs, including higher molecular weight sialylated HMOs. Our ultimate goal is to create a simple, high-throughput method, which can be used for full characterization of sialylated and/or fucosylated HMOs. These results demonstrate how current analytical techniques can be applied to characterize human milk composition, providing new tools to help the scientific community shed new light on the impact of HMOs during infant development.


Asunto(s)
Leche Humana/química , Oligosacáridos/análisis , Humanos , Espectrometría de Masas , Peso Molecular
20.
Int J Biol Macromol ; 151: 663-676, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32070739

RESUMEN

Glycosaminoglycans (GAGs) were extracted from heads of silver-banded whiting (SBW) fish and subjected to preliminary biocompatibility testing per ISO 10993: intracutaneous irritation, maximization sensitization, systemic toxicity, and cytotoxicity. When the GAG solution was injected intradermally, the observed irritation was within ISO limits and comparable to a marketed control. There was no evidence of sensitization, systemic toxicity, or cellular toxicity on the test organisms treated with the GAG mixture from SBW fish heads. Fractionation by size-exclusion chromatography has shown three distinct fractions: F1 as low molecular weight hyaluronic acid (190 kDa), F2 (82 kDa) and F3 (64 kDa), both as chondroitin sulfates. Structural characterization by 1D and 2D nuclear magnetic resonance spectroscopy and disaccharide analysis have shown sulfation ratios at positions C4:C6 of the F2 and F3 fractions respectively as 70:20% and 50:30%, and the balance of non-sulfated and 4,6-di-sulfated units. The preliminary results here suggest that GAG-based extracts from SBW fish heads are suitable alternative products to be used in soft tissue augmentation, although further long-term biocompatibility studies are still required.


Asunto(s)
Materiales Biocompatibles/química , Glicosaminoglicanos/química , Mariposas Nocturnas/química , Animales , Materiales Biocompatibles/aislamiento & purificación , Materiales Biocompatibles/farmacología , Línea Celular , Fraccionamiento Químico , Cromatografía en Gel , Glicosaminoglicanos/aislamiento & purificación , Glicosaminoglicanos/farmacología , Ácido Hialurónico/química , Ratones , Estructura Molecular , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA