Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Front Neurosci ; 18: 1389651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957187

RESUMEN

Transcranial direct current stimulation (tDCS) has been studied extensively for its potential to enhance human cognitive functions in healthy individuals and to treat cognitive impairment in various clinical populations. However, little is known about how tDCS modulates the neural networks supporting cognition and the complex interplay with mediating factors that may explain the frequently observed variability of stimulation effects within and between studies. Moreover, research in this field has been characterized by substantial methodological variability, frequent lack of rigorous experimental control and small sample sizes, thereby limiting the generalizability of findings and translational potential of tDCS. The present manuscript aims to delineate how these important issues can be addressed within a neuroimaging context, to reveal the neural underpinnings, predictors and mediators of tDCS-induced behavioral modulation. We will focus on functional magnetic resonance imaging (fMRI), because it allows the investigation of tDCS effects with excellent spatial precision and sufficient temporal resolution across the entire brain. Moreover, high resolution structural imaging data can be acquired for precise localization of stimulation effects, verification of electrode positions on the scalp and realistic current modeling based on individual head and brain anatomy. However, the general principles outlined in this review will also be applicable to other imaging modalities. Following an introduction to the overall state-of-the-art in this field, we will discuss in more detail the underlying causes of variability in previous tDCS studies. Moreover, we will elaborate on design considerations for tDCS-fMRI studies, optimization of tDCS and imaging protocols and how to assure high-level experimental control. Two additional sections address the pressing need for more systematic investigation of tDCS effects across the healthy human lifespan and implications for tDCS studies in age-associated disease, and potential benefits of establishing large-scale, multidisciplinary consortia for more coordinated tDCS research in the future. We hope that this review will contribute to more coordinated, methodologically sound, transparent and reproducible research in this field. Ultimately, our aim is to facilitate a better understanding of the underlying mechanisms by which tDCS modulates human cognitive functions and more effective and individually tailored translational and clinical applications of this technique in the future.

2.
Psychophysiology ; : e14655, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031971

RESUMEN

Neural oscillations are electrophysiological indicators of synchronous neuronal activity in the brain. Recent work suggests aberrant patterns of neuronal activity in patients with poststroke aphasia. Yet, there is a lack of systematic explorations of neural oscillations in poststroke aphasia. Investigating changes in the dynamics of neuronal activity after stroke may be helpful to identify neural markers of aphasia and language recovery and increase the current understanding of successful language rehabilitation. This review summarizes research on neural oscillations in poststroke aphasia and evaluates their potential as biomarkers for specific linguistic processes. We searched the literature through PubMed, Web of Science, and EBSCO, and selected 31 studies that met the inclusion criteria. Our analyses focused on neural oscillation activity in each frequency band, brain connectivity, and therapy-induced changes during language recovery. Our review highlights potential neurophysiological markers; however, the literature remains confounded, casting doubt on the reliability of these findings. Future research must address these confounds to confirm the robustness of cross-study findings on neural oscillations in poststroke aphasia.

3.
Neurobiol Lang (Camb) ; 5(2): 608-627, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38939729

RESUMEN

The structure of human language is inherently hierarchical. The left posterior inferior frontal gyrus (LpIFG) is proposed to be a core region for constructing syntactic hierarchies. However, it remains unclear whether LpIFG plays a causal role in syntactic processing in Mandarin Chinese and whether its contribution depends on syntactic complexity, working memory, or both. We addressed these questions by applying inhibitory continuous theta-burst stimulation (cTBS) over LpIFG. Thirty-two participants processed sentences containing embedded relative clauses (i.e., complex syntactic processing), syntactically simpler coordinated sentences (i.e., simple syntactic processing), and non-hierarchical word lists (i.e., word list processing) after receiving real or sham cTBS. We found that cTBS significantly increased the coefficient of variation, a representative index of processing stability, in complex syntactic processing (esp., when subject relative clause was embedded) but not in the other two conditions. No significant changes in d' and reaction time were detected in these conditions. The findings suggest that (a) inhibitory effect of cTBS on the LpIFG might be prominent in perturbing the complex syntactic processing stability but subtle in altering the processing quality; and (b) the causal role of the LpIFG seems to be specific for syntactic processing rather than working memory capacity, further evidencing their separability in LpIFG. Collectively, these results support the notion of the LpIFG as a core region for complex syntactic processing across languages.

4.
Brain Commun ; 6(3): fcae129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707712

RESUMEN

Stroke is the leading cause of long-term disability worldwide. Incurred brain damage can disrupt cognition, often with persisting deficits in language and executive capacities. Yet, despite their clinical relevance, the commonalities and differences between language versus executive control impairments remain under-specified. To fill this gap, we tailored a Bayesian hierarchical modelling solution in a largest-of-its-kind cohort (1080 patients with stroke) to deconvolve language and executive control with respect to the stroke topology. Cognitive function was assessed with a rich neuropsychological test battery including global cognitive function (tested with the Mini-Mental State Exam), language (assessed with a picture naming task), executive speech function (tested with verbal fluency tasks), executive control functions (Trail Making Test and Digit Symbol Coding Task), visuospatial functioning (Rey Complex Figure), as well as verbal learning and memory function (Soul Verbal Learning). Bayesian modelling predicted interindividual differences in eight cognitive outcome scores three months after stroke based on specific tissue lesion topologies. A multivariate factor analysis extracted four distinct cognitive factors that distinguish left- and right-hemispheric contributions to ischaemic tissue lesions. These factors were labelled according to the neuropsychological tests that had the strongest factor loadings: One factor delineated language and general cognitive performance and was mainly associated with damage to left-hemispheric brain regions in the frontal and temporal cortex. A factor for executive control summarized mental flexibility, task switching and visual-constructional abilities. This factor was strongly related to right-hemispheric brain damage of posterior regions in the occipital cortex. The interplay of language and executive control was reflected in two distinct factors that were labelled as executive speech functions and verbal memory. Impairments on both factors were mainly linked to left-hemispheric lesions. These findings shed light onto the causal implications of hemispheric specialization for cognition; and make steps towards subgroup-specific treatment protocols after stroke.

5.
Exp Brain Res ; 242(3): 599-618, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38227008

RESUMEN

The ability to inhibit an already initiated response is crucial for navigating the environment. However, it is unclear which characteristics make stop-signals more likely to be processed efficiently. In three consecutive studies, we demonstrate that stop-signal modality and location are key factors that influence reactive response inhibition. Study 1 shows that tactile stop-signals lead to better performance compared to visual stop-signals in an otherwise visual choice-reaction task. Results of Study 2 reveal that the location of the stop-signal matters. Specifically, if a visual stop-signal is presented at a different location compared to the visual go-signal, then stopping performance is enhanced. Extending these results, study 3 suggests that tactile stop-signals and location-distinct visual stop-signals retain their performance enhancing effect when visual distractors are presented at the location of the go-signal. In sum, these results confirm that stop-signal modality and location influence reactive response inhibition, even in the face of concurrent distractors. Future research may extend and generalize these findings to other cross-modal setups.


Asunto(s)
Atención , Inhibición Psicológica , Humanos , Tiempo de Reacción/fisiología , Atención/fisiología , Desempeño Psicomotor/fisiología
6.
Neurosci Biobehav Rev ; 157: 105532, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38194868

RESUMEN

Reactive response inhibition cancels impending actions to enable adaptive behavior in ever-changing environments and has wide neuropsychiatric implications. A canonical paradigm to measure the covert inhibition latency is the stop-signal task (SST). To probe the cortico-subcortical network underlying motor inhibition, transcranial magnetic stimulation (TMS) has been applied over central nodes to modulate SST performance, especially to the right inferior frontal cortex and the presupplementary motor area. Since the vast parameter spaces of SST and TMS enabled diverse implementations, the insights delivered by emerging TMS-SST studies remain inconclusive. Therefore, a systematic review was conducted to account for variability and synthesize converging evidence. Results indicate certain protocol specificity through the consistent perturbations induced by online TMS, whereas offline protocols show paradoxical effects on different target regions besides numerous null effects. Ancillary neuroimaging findings have verified and dissociated the underpinning network dynamics. Sources of heterogeneity in designs and risk of bias are highlighted. Finally, we outline best-practice recommendations to bridge methodological gaps and subserve the validity as well as replicability of future work.


Asunto(s)
Corteza Motora , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Corteza Motora/fisiología , Inhibición Psicológica , Neuroimagen , Análisis y Desempeño de Tareas
7.
Proc Natl Acad Sci U S A ; 120(47): e2306279120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37963247

RESUMEN

Recent neurobiological models on language suggest that auditory sentence comprehension is supported by a coordinated temporal interplay within a left-dominant brain network, including the posterior inferior frontal gyrus (pIFG), posterior superior temporal gyrus and sulcus (pSTG/STS), and angular gyrus (AG). Here, we probed the timing and causal relevance of the interplay between these regions by means of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG). Our TMS-EEG experiments reveal region- and time-specific causal evidence for a bidirectional information flow from left pSTG/STS to left pIFG and back during auditory sentence processing. Adapting a condition-and-perturb approach, our findings further suggest that the left pSTG/STS can be supported by the left AG in a state-dependent manner.


Asunto(s)
Lenguaje , Estimulación Magnética Transcraneal , Corteza Cerebral , Lóbulo Parietal , Comprensión/fisiología , Imagen por Resonancia Magnética , Mapeo Encefálico
8.
Commun Biol ; 6(1): 1114, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923809

RESUMEN

Dyslexia, a frequent learning disorder, is characterized by severe impairments in reading and writing and hypoactivation in reading regions in the left hemisphere. Despite decades of research, it remains unclear to date if observed behavioural deficits are caused by aberrant network interactions during reading and whether differences in functional activation and connectivity are directly related to reading performance. Here we provide a comprehensive characterization of reading-related brain connectivity in adults with and without dyslexia. We find disrupted functional coupling between hypoactive reading regions, especially between the left temporo-parietal and occipito-temporal cortices, and an extensive functional disruption of the right cerebellum in adults with dyslexia. Network analyses suggest that individuals with dyslexia process written stimuli via a dorsal decoding route and show stronger reading-related interaction with the right cerebellum. Moreover, increased connectivity within networks is linked to worse reading performance in dyslexia. Collectively, our results provide strong evidence for aberrant task-related connectivity as a neural marker for dyslexia that directly impacts behavioural performance. The observed differences in activation and connectivity suggest that one effective way to alleviate reading problems in dyslexia is through modulating interactions within the reading network with neurostimulation methods.


Asunto(s)
Dislexia , Imagen por Resonancia Magnética , Adulto , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Lóbulo Temporal
9.
Phys Med Biol ; 68(21)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37783213

RESUMEN

Objectives. Transcranial magnetic stimulation (TMS) has been widely used to modulate brain activity in healthy and diseased brains, but the underlying mechanisms are not fully understood. Previous research leveraged biophysical modeling of the induced electric field (E-field) to map causal structure-function relationships in the primary motor cortex. This study aims at transferring this localization approach to spatial attention, which helps to understand the TMS effects on cognitive functions, and may ultimately optimize stimulation schemes.Approach. Thirty right-handed healthy participants underwent a functional magnetic imaging (fMRI) experiment, and seventeen of them participated in a TMS experiment. The individual fMRI activation peak within the right inferior parietal lobule (rIPL) during a Posner-like attention task defined the center target for TMS. Thereafter, participants underwent 500 Posner task trials. During each trial, a 5-pulse burst of 10 Hz repetitive TMS (rTMS) was given over the rIPL to modulate attentional processing. The TMS-induced E-fields for every cortical target were correlated with the behavioral modulation to identify relevant cortical regions for attentional orientation and reorientation.Main results. We did not observe a robust correlation between E-field strength and behavioral outcomes, highlighting the challenges of transferring the localization method to cognitive functions with high neural response variability and complex network interactions. Nevertheless, TMS selectively inhibited attentional reorienting in five out of seventeen subjects, resulting in task-specific behavioral impairments. The BOLD-measured neuronal activity and TMS-evoked neuronal effects showed different patterns, which emphasizes the principal distinction between the neural activity being correlated with (or maybe even caused by) particular paradigms, and the activity of neural populations exerting a causal influence on the behavioral outcome.Significance. This study is the first to explore the mechanisms of TMS-induced attentional modulation through electrical field modeling. Our findings highlight the complexity of cognitive functions and provide a basis for optimizing attentional stimulation protocols.


Asunto(s)
Mapeo Encefálico , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Imagen por Resonancia Magnética , Encéfalo/fisiología , Atención/fisiología
10.
Brain Stimul ; 16(5): 1346-1357, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37704032

RESUMEN

BACKGROUND: The continuous decline of executive abilities with age is mirrored by increased neural activity of domain-general networks during task processing. So far, it remains unclear how much domain-general networks contribute to domain-specific processes such as language when cognitive demands increase. The current neuroimaging study explored the potential of intermittent theta-burst stimulation (iTBS) over a domain-general hub to enhance executive and semantic processing in healthy middle-aged to older adults. METHODS: We implemented a cross-over within-subject study design with three task-based neuroimaging sessions per participant. Using an individualized stimulation approach, each participant received once effective and once sham iTBS over the pre-supplementary motor area (pre-SMA), a region of domain-general control. Subsequently, task-specific stimulation effects were assessed in functional MRI using a semantic and a non-verbal executive task with varying cognitive demand. RESULTS: Effective stimulation increased activity only during semantic processing in visual and dorsal attention networks. Further, iTBS induced increased seed-based connectivity in task-specific networks for semantic and executive conditions with high cognitive load but overall reduced whole-brain coupling between domain-general networks. Notably, stimulation-induced changes in activity and connectivity related differently to behavior: While stronger activity of the parietal dorsal attention network was linked to poorer semantic performance, its enhanced coupling with the pre-SMA was associated with more efficient semantic processing. CONCLUSIONS: iTBS modulates networks in a task-dependent manner and generates effects at regions remote to the stimulation site. These neural changes are linked to more efficient semantic processing, which underlines the general potential of network stimulation approaches in cognitive aging.


Asunto(s)
Corteza Motora , Semántica , Persona de Mediana Edad , Humanos , Anciano , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiología , Cognición/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico , Imagen por Resonancia Magnética/métodos , Estimulación Magnética Transcraneal/métodos
11.
Psychol Bull ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37768610

RESUMEN

Language is a key human faculty for communication and interaction that provides invaluable insight into the human mind. Previous work has dissected different linguistic operations, but the large-scale brain networks involved in language processing are still not fully uncovered. Particularly, little is known about the subdomain-specific engagement of brain areas during semantic, syntactic, phonological, and prosodic processing and the role of subcortical and cerebellar areas. Here, we present the largest coordinate-based meta-analysis of language processing including 403 experiments. Overall, language processing primarily engaged bilateral fronto-temporal cortices, with the highest activation likelihood in the left posterior inferior frontal gyrus (IFG). Whereas we could not detect any syntax-specific regions, semantics specifically engaged left posterior temporal areas (left fusiform and occipitotemporal cortex) and the left frontal pole. Phonology showed highest subdomain-specificity in bilateral auditory and left postcentral regions, whereas prosody engaged specifically the right amygdala and the right IFG. Across all subdomains and modalities, we found strong bilateral subcortical and cerebellar contributions. Especially the right cerebellum was engaged during various processes, including speech production, visual, and phonological tasks. Collectively, our results emphasize consistent recruitment and high functional modularity for general language processing in bilateral domain-specific (temporo-frontal) and domain-general (medial frontal/anterior cingulate cortex) regions but also a high specialization of different subareas for different linguistic subdomains. Our findings refine current neurobiological models of language by adding novel insight into the general sensitivity of the language network and subdomain-specific functions of different brain areas and highlighting the role of subcortical and cerebellar regions for different language operations. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

12.
Neuroimage Clin ; 40: 103516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37769366

RESUMEN

The neuroanatomical correlates of basic semantic composition have been investigated in previous neuroimaging and lesion studies, but research on the electrophysiology of the involved processes is scarce. A large literature on sentence-level event-related potentials (ERPs) during semantic processing has identified at least two relevant components - the N400 and the P600. Other studies demonstrated that these components are reduced and/or delayed in people with aphasia (PWA). However, it remains to be shown if these findings generalize beyond the sentence level. Specifically, it is an open question if an alteration in ERP responses in PWA can also be observed during basic semantic composition, providing a potential future diagnostic tool. The present study aimed to elucidate the electrophysiological dynamics of basic semantic composition in a group of post-stroke PWA. We included 20 PWA and 20 age-matched controls (mean age 58 years) and measured ERP responses while they performed a plausibility judgment task on two-word phrases that were either meaningful ("anxious horse"), anomalous ("anxious wood") or had the noun replaced by a pseudoword ("anxious gufel"). The N400 effect for anomalous versus meaningful phrases was similar in both groups. In contrast, unlike the control group, PWA did not show an N400 effect between pseudoword and meaningful phrases. Moreover, both groups exhibited a parietal P600 effect towards pseudoword phrases, while PWA showed an additional P600 over frontal electrodes. Finally, PWA showed an inverse correlation between the magnitude of the N400 and P600 effects: PWA exhibiting no or even reversed N400 effects towards anomalous and pseudoword phrases showed a stronger P600 effect. These results may reflect a compensatory mechanism which allows PWA to arrive at the correct interpretation of the phrase. When compositional processing capacities are impaired in the early N400 time-window, PWA may make use of a more elaborate re-analysis process reflected in the P600.


Asunto(s)
Afasia , Semántica , Humanos , Masculino , Femenino , Animales , Caballos , Persona de Mediana Edad , Potenciales Evocados/fisiología , Electroencefalografía , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Afasia/diagnóstico por imagen , Afasia/etiología , Comprensión/fisiología
13.
bioRxiv ; 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37609325

RESUMEN

Stroke is the leading cause of long-term disability worldwide. Incurred brain damage disrupts cognition, often with persisting deficits in language and executive capacities. Despite their clinical relevance, the commonalities, and differences of language versus executive control impairments remain under-specified. We tailored a Bayesian hierarchical modeling solution in a largest-of-its-kind cohort (1080 stroke patients) to deconvolve language and executive control in the brain substrates of stroke insults. Four cognitive factors distinguished left- and right-hemispheric contributions to ischemic tissue lesion. One factor delineated language and general cognitive performance and was mainly associated with damage to left-hemispheric brain regions in the frontal and temporal cortex. A factor for executive control summarized control and visual-constructional abilities. This factor was strongly related to right-hemispheric brain damage of posterior regions in the occipital cortex. The interplay of language and executive control was reflected in two factors: executive speech functions and verbal memory. Impairments on both were mainly linked to left-hemispheric lesions. These findings shed light onto the causal implications of hemispheric specialization for cognition; and make steps towards subgroup-specific treatment protocols after stroke.

14.
Brain Lang ; 244: 105313, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37595340

RESUMEN

Conceptual knowledge is central to human cognition. Neuroimaging studies suggest that conceptual processing involves modality-specific and multimodal brain regions in a task-dependent fashion. However, it remains unclear (1) to what extent conceptual feature representations are also modulated by the task, (2) whether conceptual representations in multimodal regions are indeed cross-modal, and (3) how the conceptual system relates to the large-scale functional brain networks. To address these issues, we conducted multivariate pattern analyses on fMRI data. 40 participants performed three tasks-lexical decision, sound judgment, and action judgment-on written words. We found that (1) conceptual feature representations are strongly modulated by the task, (2) conceptual representations in several multimodal regions are cross-modal, and (3) conceptual feature retrieval involves the default, frontoparietal control, and dorsal attention networks. Conceptual representations in these large-scale networks are task-dependent and cross-modal. Our findings support theories that assume conceptual processing to rely on a flexible, multi-level architecture.


Asunto(s)
Encéfalo , Cognición , Humanos , Encéfalo/diagnóstico por imagen , Juicio , Conocimiento , Análisis Multivariante
15.
Sci Rep ; 13(1): 11565, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463991

RESUMEN

Stopping an already initiated action is crucial for human everyday behavior and empirical evidence points toward the prefrontal cortex playing a key role in response inhibition. Two regions that have been consistently implicated in response inhibition are the right inferior frontal gyrus (IFG) and the more superior region of the dorsolateral prefrontal cortex (DLPFC). The present study investigated the effect of offline 1 Hz transcranial magnetic stimulation (TMS) over the right IFG and DLPFC on performance in a gamified stop-signal task (SSG). We hypothesized that perturbing each area would decrease performance in the SSG, albeit with a quantitative difference in the performance decrease after stimulation. After offline TMS, functional short-term reorganization is possible, and the domain-general area (i.e., the right DLPFC) might be able to compensate for the perturbation of the domain-specific area (i.e., the right IFG). Results showed that 1 Hz offline TMS over the right DLPFC and the right IFG at 110% intensity of the resting motor threshold had no effect on performance in the SSG. In fact, evidence in favor of the null hypothesis was found. One intriguing interpretation of this result is that within-network compensation was triggered, canceling out the potential TMS effects as has been suggested in recent theorizing on TMS effects, although the presented results do not unambiguously identify such compensatory mechanisms. Future studies may result in further support for this hypothesis, which is especially important when studying reactive response in complex environments.


Asunto(s)
Corteza Prefrontal , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Corteza Prefrontal/fisiología , Corteza Prefontal Dorsolateral , Descanso
16.
Neurosci Biobehav Rev ; 149: 105154, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37011776

RESUMEN

Non-invasive brain stimulation techniques are popular tools to investigate brain function in health and disease. Although transcranial magnetic stimulation (TMS) is widely used in cognitive neuroscience research to probe causal structure-function relationships, studies often yield inconclusive results. To improve the effectiveness of TMS studies, we argue that the cognitive neuroscience community needs to revise the stimulation focality principle - the spatial resolution with which TMS can differentially stimulate cortical regions. In the motor domain, TMS can differentiate between cortical muscle representations of adjacent fingers. However, this high degree of spatial specificity cannot be obtained in all cortical regions due to the influences of cortical folding patterns on the TMS-induced electric field. The region-dependent focality of TMS should be assessed a priori to estimate the experimental feasibility. Post-hoc simulations allow modeling of the relationship between cortical stimulation exposure and behavioral modulation by integrating data across stimulation sites or subjects.


Asunto(s)
Encéfalo , Estimulación Magnética Transcraneal , Humanos , Encéfalo/fisiología , Estimulación Magnética Transcraneal/métodos , Cognición/fisiología
17.
Brain Commun ; 5(2): fcad076, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37013177

RESUMEN

Understanding the relationships between brain structure and language behaviour in primary progressive aphasia provides crucial information about these diseases' pathomechanisms. However, previous investigations have been limited from providing a statistically reliable view of broad language abilities by sample size, variant focus and task focus. In this study, the authors aimed to determine the relationship between brain structure and language behaviour in primary progressive aphasia, to determine the degree to which task-associated regions were atrophied across disease variants and to determine the degree to which task-related atrophy overlaps across disease variants. Participants were 118 primary progressive aphasia patients and 61 healthy, age-matched controls tested from 2011 to 2018 in the German Consortium for Frontotemporal Lobar Degeneration cohort. Diagnosis of primary progressive aphasia required progressive deterioration of mainly speech and language for ≥ 2 years, and variant was diagnosed by the criteria of Gorno-Tempini et al. (Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006-1014). Twenty-one participants not fulfilling a specific subtype were classified as mixed-variant and excluded. Language tasks of interest included the Boston naming test, a German adaptation of the Repeat and Point task, phonemic and category fluency tasks and the reading/writing subtest of the Aachen Aphasia Test. Brain structure was measured by cortical thickness. We observed networks of language task-associated temporal, frontal and parietal cortex. Overlapping task-associated atrophy was observed in the left lateral, ventral and medial temporal lobes, middle and superior frontal gyri, supramarginal gyrus and insula. Some regions, primarily in the perisylvian region, were associated with language behaviour despite showing no significant atrophy. The results crucially extend less powerful studies associating brain and language measures in primary progressive aphasia. Cross-variant atrophy in task-associated regions suggests partially shared underlying deficits, whereas unique atrophy reinforces variant-specific deficits. Language task-related regions that are not obviously atrophied suggest regions of future network disruption and encourage understanding of task deficits beyond clearly atrophied cortex. These results may pave the way for new treatment approaches.

18.
Commun Biol ; 6(1): 354, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002267

RESUMEN

Ischemic cerebrovascular events often lead to aphasia. Previous work provided hints that such strokes may affect women and men in distinct ways. Women tend to suffer strokes with more disabling language impairment, even if the lesion size is comparable to men. In 1401 patients, we isolate data-led representations of anatomical lesion patterns and hand-tailor a Bayesian analytical solution to carefully model the degree of sex divergence in predicting language outcomes ~3 months after stroke. We locate lesion-outcome effects in the left-dominant language network that highlight the ventral pathway as a core lesion focus across different tests of language performance. We provide detailed evidence for sex-specific brain-behavior associations in the domain-general networks associated with cortico-subcortical pathways, with unique contributions of the fornix in women and cingular fiber bundles in men. Our collective findings suggest diverging white matter substrates in how stroke causes language deficits in women and men. Clinically acknowledging such sex disparities has the potential to improve personalized treatment for stroke patients worldwide.


Asunto(s)
Afasia , Accidente Cerebrovascular , Sustancia Blanca , Masculino , Humanos , Femenino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Teorema de Bayes , Afasia/complicaciones , Afasia/patología , Sesgo
19.
Neuroimage Clin ; 37: 103326, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36736198

RESUMEN

Language is organized in large-scale networks in the human brain that show a strong potential for flexible interactions and adaptation. Neuroplasticity is the central mechanism that allows such dynamic modulation to changing conditions across the life span and is particularly important for network reorganization after brain lesions. Most studies on language reorganization focused on language recovery after stroke. Yet, a strong degree of adaptive neuroplasticity can also be observed in patients with brain tumors in language-eloquent brain areas. This review discusses key mechanisms for neural reorganization in patients with brain tumors. Our main aim is to elucidate the underlying mechanisms for intra- and interhemispheric plasticity in the language network in these patients. The following reorganization patterns are discussed: 1) Persisting function within the tumor; 2) Reorganization in perilesional regions; 3) Reorganization in a distributed network of the affected hemisphere; 4) Reorganization to the contralesional hemisphere. In this context, we shed light on language-related reorganization patterns in frontal and temporo-parietal areas and discuss their functional relevance. We also address tumor-related changes in structural and functional connectivity between eloquent brain regions. Thereby, we aim to expand the general understanding of the plastic potential of the neural language network and facilitate clinical decision-making processes for effective, function-preserving tumor treatment.


Asunto(s)
Neoplasias Encefálicas , Glioma , Accidente Cerebrovascular , Humanos , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Mapeo Encefálico , Plasticidad Neuronal , Lenguaje , Imagen por Resonancia Magnética
20.
Brain Struct Funct ; 228(1): 273-291, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35476027

RESUMEN

Semantic knowledge is central to human cognition. The angular gyrus (AG) is widely considered a key brain region for semantic cognition. However, the role of the AG in semantic processing is controversial. Key controversies concern response polarity (activation vs. deactivation) and its relation to task difficulty, lateralization (left vs. right AG), and functional-anatomical subdivision (PGa vs. PGp subregions). Here, we combined the fMRI data of five studies on semantic processing (n = 172) and analyzed the response profiles from the same anatomical regions-of-interest for left and right PGa and PGp. We found that the AG was consistently deactivated during non-semantic conditions, whereas response polarity during semantic conditions was inconsistent. However, the AG consistently showed relative response differences between semantic and non-semantic conditions, and between different semantic conditions. A combined analysis across all studies revealed that AG responses could be best explained by separable effects of task difficulty and semantic processing demand. Task difficulty effects were stronger in PGa than PGp, regardless of hemisphere. Semantic effects were stronger in left than right AG, regardless of subregion. These results suggest that the AG is engaged in both domain-general task-difficulty-related processes and domain-specific semantic processes. In semantic processing, we propose that left AG acts as a "multimodal convergence zone" that binds different semantic features associated with the same concept, enabling efficient access to task-relevant features.


Asunto(s)
Mapeo Encefálico , Lóbulo Parietal , Humanos , Mapeo Encefálico/métodos , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Cognición/fisiología , Semántica , Neuroimagen Funcional , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...