Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38893116

RESUMEN

Glioblastoma (GBM) is the most aggressive brain cancer. To model GBM in research, orthotopic brain tumor models, including syngeneic models like GL261 and genetically engineered mouse models like TRP, are used. In longitudinal studies, tumor growth and the treatment response are typically tracked with in vivo imaging, including bioluminescence imaging (BLI), which is quick, cost-effective, and easily quantifiable. However, BLI requires luciferase-tagged cells, and recent studies indicate that the luciferase gene can elicit an immune response, leading to tumor rejection and experimental variation. We sought to optimize the engraftment of two luciferase-expressing GBM models, GL261 Red-FLuc and TRP-mCherry-FLuc, showing differences in tumor take, with GL261 Red-FLuc cells requiring immunocompromised mice for 100% engraftment. Immunohistochemistry and MRI revealed distinct tumor characteristics: GL261 Red-FLuc tumors were well-demarcated with densely packed cells, high mitotic activity, and vascularization. In contrast, TRP-mCherry-FLuc tumors were large, invasive, and necrotic, with perivascular invasion. Quantifying the tumor volume using the HALO® AI analysis platform yielded results comparable to manual measurements, providing a standardized and efficient approach for the reliable, high-throughput analysis of luciferase-expressing tumors. Our study highlights the importance of considering tumor engraftment when using luciferase-expressing GBM models, providing insights for preclinical research design.

2.
Fluids Barriers CNS ; 21(1): 29, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532486

RESUMEN

BACKGROUND: Patients with Alzheimer's disease (AD) develop blood-brain barrier dysfunction to varying degrees. How aging impacts Aß pathology, blood-brain barrier function, and cognitive decline in AD remains largely unknown. In this study, we used 5xFAD mice to investigate changes in Aß levels, barrier function, and cognitive decline over time. METHODS: 5xFAD and wild-type (WT) mice were aged between 9.5 and 15.5 months and tested for spatial learning and reference memory with the Morris Water Maze (MWM). After behavior testing, mice were implanted with acute cranial windows and intravenously injected with fluorescent-labeled dextrans to assess their in vivo distribution in the brain by two-photon microscopy. Images were processed and segmented to obtain intravascular intensity, extravascular intensity, and vessel diameters as a measure of barrier integrity. Mice were sacrificed after in vivo imaging to isolate brain and plasma for measuring Aß levels. The effect of age and genotype were evaluated for each assay using generalized or cumulative-linked logistic mixed-level modeling and model selection by Akaike Information Criterion (AICc). Pairwise comparisons were used to identify outcome differences between the two groups. RESULTS: 5xFAD mice displayed spatial memory deficits compared to age-matched WT mice in the MWM assay, which worsened with age. Memory impairment was evident in 5xFAD mice by 2-threefold higher escape latencies, twofold greater cumulative distances until they reach the platform, and twice as frequent use of repetitive search strategies in the pool when compared with age-matched WT mice. Presence of the rd1 allele worsened MWM performance in 5xFAD mice at all ages but did not alter the rate of learning or probe trial outcomes. 9.5-month-old 15.5-month-old 5xFAD mice had twofold higher brain Aß40 and Aß42 levels (p < 0.001) and 2.5-fold higher (p = 0.007) plasma Aß40 levels compared to 9.5-month-old 5xFAD mice. Image analysis showed that vessel diameters and intra- and extravascular dextran intensities were not significantly different in 9.5- and 15.5-month-old 5xFAD mice compared to age-matched WT mice. CONCLUSION: 5xFAD mice continue to develop spatial memory deficits and increased Aß brain levels while aging. Given in vivo MP imaging limitations, further investigation with smaller molecular weight markers combined with advanced imaging techniques would be needed to reliably assess subtle differences in barrier integrity in aged mice.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Humanos , Animales , Lactante , Barrera Hematoencefálica/metabolismo , Ratones Transgénicos , Enfermedad de Alzheimer/genética , Trastornos de la Memoria , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo
3.
Fluids Barriers CNS ; 20(1): 70, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803468

RESUMEN

BACKGROUND: Loss of P-glycoprotein (P-gp) at the blood-brain barrier contributes to amyloid-ß (Aß) brain accumulation in Alzheimer's disease (AD). Using transgenic human amyloid precursor protein (hAPP)-overexpressing mice (Tg2576), we previously showed that Aß triggers P-gp loss by activating the ubiquitin-proteasome pathway, which leads to P-gp degradation. Furthermore, we showed that inhibiting the ubiquitin-activating enzyme (E1) prevents P-gp loss and lowers Aß accumulation in the brain of hAPP mice. Based on these data, we hypothesized that repurposing the FDA-approved proteasome inhibitor, bortezomib (Velcade®; BTZ), protects blood-brain barrier P-gp from degradation in hAPP mice in vivo. METHODS: We treated hAPP mice with the proteasome inhibitor BTZ or a combination of BTZ with the P-gp inhibitor cyclosporin A (CSA) for 2 weeks. Vehicle-treated wild-type (WT) mice were used as a reference for normal P-gp protein expression and transport activity. In addition, we used the opioid receptor agonist loperamide as a P-gp substrate in tail flick assays to indirectly assess P-gp transport activity at the blood-brain barrier in vivo. We also determined P-gp protein expression by Western blotting, measured P-gp transport activity levels in isolated brain capillaries with live cell confocal imaging and assessed Aß plasma and brain levels with ELISA. RESULTS: We found that 2-week BTZ treatment of hAPP mice restored P-gp protein expression and transport activity in brain capillaries to levels found in WT mice. We also observed that hAPP mice displayed significant loperamide-induced central antinociception compared to WT mice indicating impaired P-gp transport activity at the blood-brain barrier of hAPP mice in vivo. Furthermore, BTZ treatment prevented loperamide-induced antinociception suggesting BTZ protected P-gp loss in hAPP mice. Further, BTZ-treated hAPP mice had lower Aß40 and Aß42 brain levels compared to vehicle-treated hAPP mice. CONCLUSIONS: Our data indicate that BTZ protects P-gp from proteasomal degradation in hAPP mice, which helps to reduce Aß brain levels. Our data suggest that the proteasome system could be exploited for a novel therapeutic strategy in AD, particularly since increasing Aß transport across the blood-brain barrier may prove an effective treatment for patients.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Barrera Hematoencefálica/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Complejo de la Endopetidasa Proteasomal/uso terapéutico , Loperamida/metabolismo , Loperamida/farmacología , Loperamida/uso terapéutico , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Inhibidores de Proteasoma/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo
4.
Neuropathol Appl Neurobiol ; 49(6): e12942, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37812061

RESUMEN

AIMS: We sought to identify and optimise a universally available histological marker for pericytes in the human brain. Such a marker could be a useful tool for researchers. Further, identifying a gene expressed relatively specifically in human pericytes could provide new insights into the biological functions of this fascinating cell type. METHODS: We analysed single-cell RNA expression profiles derived from different human and mouse brain regions using a high-throughput and low-cost single-cell transcriptome sequencing method called EasySci. Through this analysis, we were able to identify specific gene markers for pericytes, some of which had not been previously characterised. We then used commercially (and therefore universally) available antibodies to immunolabel the pericyte-specific gene products in formalin-fixed paraffin-embedded (FFPE) human brains and also performed immunoblots to determine whether appropriately sized proteins were recognised. RESULTS: In the EasySci data sets, highly pericyte-enriched expression was notable for SLC6A12 and SLC19A1. Antibodies against these proteins recognised bands of approximately the correct size in immunoblots of human brain extracts. Following optimisation of the immunohistochemical technique, staining for both antibodies was strongly positive in small blood vessels and was far more effective than a PDGFRB antibody at staining pericyte-like cells in FFPE human brain sections. In an exploratory sample of other human organs (kidney, lung, liver, muscle), immunohistochemistry did not show the same pericyte-like pattern of staining. CONCLUSIONS: The SLC6A12 antibody was well suited for labelling pericytes in human FFPE brain sections, based on the combined results of single-cell RNA-seq analyses, immunoblots and immunohistochemical studies.


Asunto(s)
Pericitos , ARN , Humanos , Ratones , Animales , Pericitos/metabolismo , ARN/metabolismo , Encéfalo/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Inmunohistoquímica
5.
Pharmacol Rev ; 75(5): 815-853, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36973040

RESUMEN

The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Barrera Hematoencefálica , Humanos , Barrera Hematoencefálica/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Encéfalo/metabolismo , Transporte Biológico , Proteínas de Neoplasias/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo
6.
BMC Cancer ; 22(1): 844, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922758

RESUMEN

Glioblastoma (GBM) is one of the deadliest cancers. Treatment options are limited, and median patient survival is only several months. Translation of new therapies is hindered by a lack of GBM models that fully recapitulate disease heterogeneity. Here, we characterize two human GBM models (U87-luc2, U251-RedFLuc). In vitro, both cell lines express similar levels of luciferase and show comparable sensitivity to temozolomide and lapatinib exposure. In vivo, however, the two GBM models recapitulate different aspects of the disease. U87-luc2 cells quickly grow into large, well-demarcated tumors; U251-RedFLuc cells form small, highly invasive tumors. Using a new method to assess GBM invasiveness based on detecting tumor-specific anti-luciferase staining in brain slices, we found that U251-RedFLuc cells are more invasive than U87-luc2 cells. Lastly, we determined expression levels of ABC transporters in both models. Our findings indicate that U87-luc2 and U251-RedFLuc GBM models recapitulate different aspects of GBM heterogeneity that need to be considered in preclinical research.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico
7.
Fluids Barriers CNS ; 19(1): 19, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35232464

RESUMEN

BACKGROUND: Scientific conferences are vital communication events for scientists in academia, industry, and government agencies. In the brain barriers research field, several international conferences exist that allow researchers to present data, share knowledge, and discuss novel ideas and concepts. These meetings are critical platforms for researchers to connect and exchange breakthrough findings on a regular basis. Due to the worldwide COVID-19 pandemic, all in-person meetings were canceled in 2020. In response, we launched the Brain Barriers Virtual 2020 (BBV2020) seminar series, the first stand-in virtual event for the brain barriers field, to offer scientists a virtual platform to present their work. Here we report the aggregate attendance information on two in-person meetings compared with BBV2020 and comment on the utility of the virtual platform. METHODS: The BBV2020 seminar series was hosted on a Zoom webinar platform and was free of cost for participants. Using registration- and Zoom-based data from the BBV2020 virtual seminar series and survey data collected from BBV2020 participants, we analyzed attendance trends, global reach, participation based on career stage, and engagement of BBV2020. We compared these data with those from two previous in-person conferences, a BBB meeting held in 2018 and CVB 2019. RESULTS: We found that BBV2020 seminar participation steadily decreased over the course of the series. In contrast, live participation was consistently above 100 attendees and recording views were above 200 views per seminar. We also found that participants valued BBV2020 as a supplement during the COVID-19 pandemic in 2020. Based on one post-BBV2020 survey, the majority of participants indicated that they would prefer in-person meetings but would welcome a virtual component to future in-person meetings. Compared to in-person meetings, BBV2020 enabled participation from a broad range of career stages and was attended by scientists in academic, industry, and government agencies from a wide range of countries worldwide. CONCLUSIONS: Our findings suggest that a virtual event such as the BBV2020 seminar series provides easy access to science for researchers across all career stages around the globe. However, we recognize that limitations exist. Regardless, such a virtual event could be a valuable tool for the brain barriers community to reach and engage scientists worldwide to further grow the brain barriers research field in the future.


Asunto(s)
COVID-19 , Sistema Nervioso Central , Congresos como Asunto , Comunicación por Videoconferencia , Humanos , SARS-CoV-2 , Encuestas y Cuestionarios
8.
Pharmacol Ther ; 234: 108119, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35108575

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Transporte Biológico , Barrera Hematoencefálica/patología , Modelos Animales de Enfermedad , Humanos
9.
Handb Exp Pharmacol ; 273: 247-266, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33580390

RESUMEN

The accumulation of neurotoxic amyloid-beta (Aß) in the brain is one of the characteristic hallmarks of Alzheimer's disease (AD). Aß-peptide brain homeostasis is governed by its production and various clearance mechanisms. The blood-brain barrier provides a large surface area for influx and efflux mechanisms into and out of the brain. Different transporters and receptors have been implicated to play crucial roles in Aß clearance from brain. Besides Aß transport, the blood-brain barrier tightly regulates the brain's microenvironment; however, vascular alterations have been shown in patients with AD. Here, we summarize how the blood-brain barrier changes during aging and in disease and focus on recent findings of how the ABC transporter P-glycoprotein (ABCB1/P-gp) and the receptor low-density lipoprotein receptor-related protein 1 (LRP1) play a role in Aß clearance from brain.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Humanos , Fragmentos de Péptidos/metabolismo , Receptores de LDL/metabolismo
10.
Nutr Neurosci ; 25(8): 1669-1679, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33666538

RESUMEN

OBJECTIVE: The goal of the study was to identify the potential nutrigenetic effects to inulin, a prebiotic fiber, in mice with different human apolipoprotein E (APOE) genetic variants. Specifically, we compared responses to inulin for the potential modulation of the systemic metabolism and neuroprotection via gut-brain axis in mice with human APOE ϵ3 and ϵ4 alleles. METHOD: We performed experiments with young mice expressing the human APOE3 (E3FAD mice and APOE4 gene (E4FAD mice). We fed mice with either inulin or control diet for 16 weeks starting from 3 months of age. We determined gut microbiome diversity and composition using16s rRNA sequencing, systemic metabolism using in vivo MRI and metabolomics, and blood-brain barrier (BBB) tight junction expression using Western blot. RESULTS: In both E3FAD and E4FAD mice, inulin altered the alpha and beta diversity of the gut microbiome, increased beneficial taxa of bacteria and elevated cecal short chain fatty acid and hippocampal scyllo-inositol. E3FAD mice had altered metabolism related to tryptophan and tyrosine, while E4FAD mice had changes in the tricarboxylic acid cycle, pentose phosphate pathway, and bile acids. Differences were found in levels of brain metabolites related to oxidative stress, and levels of Claudin-1 and Claudin-5 BBB tight junction expression. DISCUSSION: We found that inulin had many similar beneficial effects in the gut and brain for both E3FAD and E4FAD mice, which may be protective for brain functions and reduce risk for neurodegeneration. . E3FAD and E4FAD mice also had distinct responses in several metabolic pathways, suggesting an APOE-dependent nutrigenetic effects in modulating systemic metabolism and neuroprotection.


Asunto(s)
Inulina , Prebióticos , Animales , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Eje Cerebro-Intestino , Modelos Animales de Enfermedad , Genotipo , Humanos , Ratones , Neuroprotección , Nutrigenómica
11.
Fluids Barriers CNS ; 18(1): 10, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676539

RESUMEN

BACKGROUND: Failure to clear Aß from the brain is partly responsible for Aß brain accumulation in Alzheimer's disease (AD). A critical protein for clearing Aß across the blood-brain barrier is the efflux transporter P-glycoprotein (P-gp). In AD, P-gp levels are reduced, which contributes to impaired Aß brain clearance. However, the mechanism responsible for decreased P-gp levels is poorly understood and there are no strategies available to protect P-gp. We previously demonstrated in isolated brain capillaries ex vivo that human Aß40 (hAß40) triggers P-gp degradation by activating the ubiquitin-proteasome pathway. In this pathway, hAß40 initiates P-gp ubiquitination, leading to internalization and proteasomal degradation of P-gp, which then results in decreased P-gp protein expression and transport activity levels. Here, we extend this line of research and present results from an in vivo study using a transgenic mouse model of AD (human amyloid precursor protein (hAPP)-overexpressing mice; Tg2576). METHODS: In our study, hAPP mice were treated with vehicle, nocodazole (NCZ, microtubule inhibitor to block P-gp internalization), or a combination of NCZ and the P-gp inhibitor cyclosporin A (CSA). We determined P-gp protein expression and transport activity levels in isolated mouse brain capillaries and Aß levels in plasma and brain tissue. RESULTS: Treating hAPP mice with 5 mg/kg NCZ for 14 days increased P-gp levels to levels found in WT mice. Consistent with this, P-gp-mediated hAß42 transport in brain capillaries was increased in NCZ-treated hAPP mice compared to untreated hAPP mice. Importantly, NCZ treatment significantly lowered hAß40 and hAß42 brain levels in hAPP mice, whereas hAß40 and hAß42 levels in plasma remained unchanged. CONCLUSIONS: These findings provide in vivo evidence that microtubule inhibition maintains P-gp protein expression and transport activity levels, which in turn helps to lower hAß brain levels in hAPP mice. Thus, protecting P-gp at the blood-brain barrier may provide a novel therapeutic strategy for AD and other Aß-based pathologies.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo , Moduladores de Tubulina/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/efectos de los fármacos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Péptidos beta-Amiloides/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ciclosporina/farmacología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Nocodazol/farmacología
12.
Int J Mol Sci ; 22(3)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530349

RESUMEN

Tauopathies are a group of more than twenty known disorders that involve progressive neurodegeneration, cognitive decline and pathological tau accumulation. Current therapeutic strategies provide only limited, late-stage symptomatic treatment. This is partly due to lack of understanding of the molecular mechanisms linking tau and cellular dysfunction, especially during the early stages of disease progression. In this study, we treated early stage tau transgenic mice with a multi-target kinase inhibitor to identify novel substrates that contribute to cognitive impairment and exhibit therapeutic potential. Drug treatment significantly ameliorated brain atrophy and cognitive function as determined by behavioral testing and a sensitive imaging technique called manganese-enhanced magnetic resonance imaging (MEMRI) with quantitative R1 mapping. Surprisingly, these benefits occurred despite unchanged hyperphosphorylated tau levels. To elucidate the mechanism behind these improved cognitive outcomes, we performed quantitative proteomics to determine the altered protein network during this early stage in tauopathy and compare this model with the human Alzheimer's disease (AD) proteome. We identified a cluster of preserved pathways shared with human tauopathy with striking potential for broad multi-target kinase intervention. We further report high confidence candidate proteins as novel therapeutically relevant targets for the treatment of tauopathy. Proteomics data are available via ProteomeXchange with identifier PXD023562.


Asunto(s)
Neuronas/efectos de los fármacos , Neuronas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Tauopatías/etiología , Tauopatías/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteoma , Proteómica/métodos , Índice de Severidad de la Enfermedad , Tauopatías/diagnóstico , Tauopatías/tratamiento farmacológico , Respuesta de Proteína Desplegada , eIF-2 Quinasa/metabolismo , Proteínas tau/metabolismo
13.
Acta Neuropathol ; 141(1): 1-24, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098484

RESUMEN

Brain arteriolosclerosis (B-ASC), characterized by pathologic arteriolar wall thickening, is a common finding at autopsy in aged persons and is associated with cognitive impairment. Hypertension and diabetes are widely recognized as risk factors for B-ASC. Recent research indicates other and more complex risk factors and pathogenetic mechanisms. Here, we describe aspects of the unique architecture of brain arterioles, histomorphologic features of B-ASC, relevant neuroimaging findings, epidemiology and association with aging, established genetic risk factors, and the co-occurrence of B-ASC with other neuropathologic conditions such as Alzheimer's disease and limbic-predominant age-related TDP-43 encephalopathy (LATE). There may also be complex physiologic interactions between metabolic syndrome (e.g., hypertension and inflammation) and brain arteriolar pathology. Although there is no universally applied diagnostic methodology, several classification schemes and neuroimaging techniques are used to diagnose and categorize cerebral small vessel disease pathologies that include B-ASC, microinfarcts, microbleeds, lacunar infarcts, and cerebral amyloid angiopathy (CAA). In clinical-pathologic studies that factored in comorbid diseases, B-ASC was independently associated with impairments of global cognition, episodic memory, working memory, and perceptual speed, and has been linked to autonomic dysfunction and motor symptoms including parkinsonism. We conclude by discussing critical knowledge gaps related to B-ASC and suggest that there are probably subcategories of B-ASC that differ in pathogenesis. Observed in over 80% of autopsied individuals beyond 80 years of age, B-ASC is a complex and under-studied contributor to neurologic disability.


Asunto(s)
Encéfalo/patología , Arteriosclerosis Intracraneal/patología , Anciano , Anciano de 80 o más Años , Animales , Arteriolas/patología , Angiopatía Amiloide Cerebral , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/psicología , Humanos , Arteriosclerosis Intracraneal/psicología , Neuroimagen
14.
FEBS Lett ; 594(23): 4076-4084, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33022784

RESUMEN

The levels of amyloid peptides in the brain are regulated by a clearance pathway from neurons to the blood-brain barrier. The first step is thought to involve diffusion from the plasma membrane to the interstitium. However, amyloid peptides are hydrophobic and avidly intercalate within membranes. The ABC transporter P-glycoprotein is implicated in the clearance of amyloid peptides across the blood-brain, but its role at neurons is undetermined. We here propose that P-glycoprotein mediates 'exit' of amyloid peptides from neurons. Indeed, amyloid peptides have physicochemical similarities to substrates of P-glycoprotein, but their larger size represents a conundrum. This review probes the plausibility of a mechanism for amyloid peptide transport by P-glycoprotein exploiting evolving biochemical and structural models.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Péptidos beta-Amiloides/metabolismo , Neuronas/metabolismo , Animales , Células Endoteliales , Humanos
15.
Fluids Barriers CNS ; 17(1): 56, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928243

RESUMEN

David S. Miller was Acting Scientific Director of the Division of Intramural Research at the National Institute of Environmental Health Sciences, National Institutes of Health, and Head of the Intracellular Regulation Group in the Laboratory of Toxicology and Pharmacology before he retired in 2016. David received his Ph.D. in biochemistry from the University of Maine in 1973. David was a Group Leader at the Michigan Cancer Foundation before joining the NIEHS in 1985. His research covered a wide range from renal excretory transport mechanisms to regulation of transporters at the blood-CSF and blood-brain barriers, from fish, amphibians and birds to mammals. David was an outstanding scientist with irresistible enthusiasm for science and an incredible ability to think outside the box while being an exceptional mentor and friend.


Asunto(s)
Neurociencias/historia , Barrera Hematoencefálica/fisiología , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Masculino , Mentores , National Institutes of Health (U.S.) , Farmacología/historia , Transporte de Proteínas/fisiología , Toxicología/historia , Estados Unidos
16.
Neurobiol Dis ; 139: 104834, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32173556

RESUMEN

The ε4 allele of Apolipoprotein (APOE4) is the strongest genetic risk factor for Alzheimer's disease (AD), the most common form of dementia. Cognitively normal APOE4 carriers have developed amyloid beta (Aß) plaques and cerebrovascular, metabolic and structural deficits decades before showing the cognitive impairment. Interventions that can inhibit Aß retention and restore the brain functions to normal would be critical to prevent AD for the asymptomatic APOE4 carriers. A major goal of the study was to identify the potential usefulness of rapamycin (Rapa), a pharmacological intervention for extending longevity, for preventing AD in the mice that express human APOE4 gene and overexpress Aß (the E4FAD mice). Another goal of the study was to identify the potential pharmacogenetic differences in response to rapamycin between the E4FAD and E3FAD mice, the mice with human APOE ε3 allele. We used multi-modal MRI to measure in vivo cerebral blood flow (CBF), neurotransmitter levels, white matter integrity, water content, cerebrovascular reactivity (CVR) and somatosensory response; used behavioral assessments to determine cognitive function; used biochemistry assays to determine Aß retention and blood-brain barrier (BBB) functions; and used metabolomics to identify brain metabolic changes. We found that in the E4FAD mice, rapamycin normalized bodyweight, restored CBF (especially in female), BBB activity for Aß transport, neurotransmitter levels, neuronal integrity and free fatty acid level, and reduced Aß retention, which were not observe in the E3FAD-Rapa mice. In contrast, E3FAD-Rapa mice had lower CVR responses, lower anxiety and reduced glycolysis in the brain, which were not seen in the E4FAD-Rapa mice. Further, rapamycin appeared to normalize lipid-associated metabolism in the E4FAD mice, while slowed overall glucose-associated metabolism in the E3FAD mice. Finally, rapamycin enhanced overall water content, water diffusion in white matter, and spatial memory in both E3FAD and E4FAD mice, but did not impact the somatosensory responses under hindpaw stimulation. Our findings indicated that rapamycin was able to restore brain functions and reduce AD risk for young, asymptomatic E4FAD mice, and there were pharmacogenetic differences between the E3FAD and E4FAD mice. As the multi-modal MRI methods used in the study are readily to be used in humans and rapamycin is FDA-approved, our results may pave a way for future clinical testing of the pharmacogenetic responses in humans with different APOE alleles, and potentially using rapamycin to prevent AD for asymptomatic APOE4 carriers.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Apolipoproteínas E/genética , Sirolimus/farmacología , Animales , Apolipoproteína E4/genética , Barrera Hematoencefálica/efectos de los fármacos , Cognición , Disfunción Cognitiva , Modelos Animales de Enfermedad , Genotipo , Ratones , Ratones Transgénicos , Farmacogenética , Placa Amiloide
17.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383667

RESUMEN

Defective clearance mechanisms lead to the accumulation of amyloid-beta (Aß) peptides in the Alzheimer's brain. Though predominantly generated in neurons, little is known about how these hydrophobic, aggregation-prone, and tightly membrane-associated peptides exit into the extracellular space where they deposit and propagate neurotoxicity. The ability for P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, to export Aß across the blood-brain barrier (BBB) has previously been reported. However, controversies surrounding the P-gp-Aß interaction persist. Here, molecular data affirm that both Aß40 and Aß42 peptide isoforms directly interact with and are substrates of P-gp. This was reinforced ex vivo by the inhibition of Aß42 transport in brain capillaries from P-gp-knockout mice. Moreover, we explored whether P-gp could exert the same role in neurons. Comparison between non-neuronal CHO-APP and human neuroblastoma SK-N-SH cells revealed that P-gp is expressed and active in both cell types. Inhibiting P-gp activity using verapamil and nicardipine impaired Aß40 and Aß42 secretion from both cell types, as determined by ELISA. Collectively, these findings implicate P-gp in Aß export from neurons, as well as across the BBB endothelium, and suggest that restoring or enhancing P-gp function could be a viable therapeutic approach for removing excess Aß out of the brain in Alzheimer's disease.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Barrera Hematoencefálica/metabolismo , Neuronas/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Células CHO , Capilares/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Cricetulus , Expresión Génica , Humanos , Fragmentos de Péptidos/metabolismo , Unión Proteica , Transporte de Proteínas
18.
FASEB J ; 33(12): 14281-14295, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31661303

RESUMEN

Blood-brain barrier dysfunction in epilepsy contributes to seizures and resistance to antiseizure drugs. Reports show that seizures increase brain glutamate levels, leading to barrier dysfunction. One component of barrier dysfunction is overexpression of the drug efflux transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). Based on our previous studies, we hypothesized that glutamate released during seizures activates cytosolic phospholipase A2 (cPLA2), resulting in P-gp and BCRP overexpression. We exposed isolated rat brain capillaries to glutamate ex vivo and used an in vivo-ex vivo approach of isolating brain capillaries from rats after status epilepticus (SE) and in chronic epileptic (CE) rats. Glutamate increased cPLA2, P-gp, and BCRP protein and activity levels in isolated brain capillaries. We confirmed the role of cPLA2 in the signaling pathway in brain capillaries from male and female mice lacking cPLA2. We also demonstrated, in vivo, that cPLA2 inhibition prevents overexpression of P-gp and BCRP at the blood-brain barrier in rats after status epilepticus and in CE rats. Our data support the hypothesis that glutamate signals cPLA2 activation, resulting in overexpression of blood-brain barrier P-gp and BCRP.-Hartz, A. M. S., Rempe, R. G., Soldner, E. L. B., Pekcec, A., Schlichtiger, J., Kryscio, R., Bauer, B. Cytosolic phospholipase A2 is a key regulator of blood-brain barrier function in epilepsy.


Asunto(s)
Barrera Hematoencefálica/enzimología , Epilepsia/enzimología , Fosfolipasas A2 Grupo IV/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/enzimología , Capilares/enzimología , Epilepsia/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Genotipo , Ácido Glutámico/farmacología , Fosfolipasas A2 Grupo IV/genética , Masculino , Ratones , Ratas , Ratas Sprague-Dawley
19.
FASEB J ; 33(12): 13966-13981, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31638830

RESUMEN

The cause of antiseizure drug (ASD) resistance in epilepsy is poorly understood. Here, we focus on the transporter P-glycoprotein (P-gp) that is partly responsible for limited ASD brain uptake, which is thought to contribute to ASD resistance. We previously demonstrated that cyclooxygenase-2 (COX-2) and the prostaglandin E receptor, prostanoid E receptor subtype 1, are involved in seizure-mediated P-gp up-regulation. Thus, we hypothesized that inhibiting microsomal prostaglandin E2 (PGE2) synthase-1 (mPGES-1), the enzyme generating PGE2, prevents blood-brain barrier P-gp up-regulation after status epilepticus (SE). To test our hypothesis, we exposed isolated brain capillaries to glutamate ex vivo and used a combined in vivo-ex vivo approach by isolating brain capillaries from humanized mPGES-1 mice to study P-gp levels. We demonstrate that glutamate signaling through the NMDA receptor, cytosolic phospholipase A2, COX-2, and mPGES-1 increases P-gp protein expression and transport activity levels. We show that mPGES-1 is expressed in human, rat, and mouse brain capillaries. We show that BI1029539, an mPGES-1 inhibitor, prevented up-regulation of P-gp expression and transport activity in capillaries exposed to glutamate and in capillaries from humanized mPGES-1 mice after SE. Our data provide key signaling steps underlying seizure-induced P-gp up-regulation and suggest that mPGES-1 inhibitors could potentially prevent P-gp up-regulation in epilepsy.-Soldner, E. L. B., Hartz, A. M. S., Akanuma, S.-I., Pekcec, A., Doods, H., Kryscio, R. J., Hosoya, K.-I., Bauer, B. Inhibition of human microsomal PGE2 synthase-1 reduces seizure-induced increases of P-glycoprotein expression and activity at the blood-brain barrier.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Barrera Hematoencefálica/metabolismo , Dinoprostona/metabolismo , Microsomas/metabolismo , Prostaglandina-E Sintasas/metabolismo , Convulsiones/metabolismo , Animales , Transporte Biológico/fisiología , Encéfalo/metabolismo , Capilares/metabolismo , Ciclooxigenasa 2/metabolismo , Epilepsia/metabolismo , Femenino , Ácido Glutámico/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Regulación hacia Arriba/fisiología
20.
J Vis Exp ; (139)2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30272660

RESUMEN

Understanding blood-brain barrier function under physiological and pathophysiological conditions is critical for the development of new therapeutic strategies that hold the promise to enhance brain drug delivery, improve brain protection, and treat brain disorders. However, studying the human blood-brain barrier function is challenging. Thus, there is a critical need for appropriate models. In this regard, brain capillaries isolated from human brain tissue represent a unique tool to study barrier function as close to the human in vivo situation as possible. Here, we describe an optimized protocol to isolate capillaries from human brain tissue at a high yield and with consistent quality and purity. Capillaries are isolated from fresh human brain tissue using mechanical homogenization, density-gradient centrifugation, and filtration. After the isolation, the human brain capillaries can be used for various applications including leakage assays, live cell imaging, and immune-based assays to study protein expression and function, enzyme activity, or intracellular signaling. Isolated human brain capillaries are a unique model to elucidate the regulation of the human blood-brain barrier function. This model can provide insights into central nervous system (CNS) pathogenesis, which will help the development of therapeutic strategies for treating CNS disorders.


Asunto(s)
Transporte Biológico/fisiología , Barrera Hematoencefálica/anatomía & histología , Encéfalo/anatomía & histología , Capilares/anatomía & histología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...