Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; : e202400408, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622065

RESUMEN

The development of a highly active photocatalyst for visible-light water splitting requires a high-quality semiconductor material and a cocatalyst, which promote both the migration of photogenerated charge carriers and surface redox reactions. In this work, a cocatalyst was loaded onto an oxyfluoride photocatalyst, Pb2Ti2O5.4F1.2, to improve the water oxidation activity. Among the metal oxides examined as cocatalysts, RuO2 was found to be the most suitable, and the O2 evolution activity depended on the preparation conditions for Ru/Pb2Ti2O5.4F1.2. The highest activity was obtained with RuCl3-impregnated Pb2Ti2O5.4F1.2 heated under a flow of H2 at 523 K. The H2-treated Ru/Pb2Ti2O5.4F1.2 showed an O2 evolution rate an order of magnitude higher than those for the analogues without the H2 treatment (e. g., RuO2/Pb2Ti2O5.4F1.2). Physicochemical analyses by X-ray absorption fine-structure spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and time-resolved microwave conductivity measurements indicated that the optimized photocatalyst contained partially reduced RuO2 species with a particle size of ~5 nm. These partially reduced species effectively trapped the photogenerated charge carriers and promoted the oxidation of water into O2. The optimized Ru/Pb2Ti2O5.4F1.2 could function as an O2-evolving photocatalyst in Z-scheme overall water splitting, in combination with an Ru-loaded, Rh-doped SrTiO3 photocatalyst.

2.
J Am Chem Soc ; 146(13): 9311-9317, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38502926

RESUMEN

A π-conjugated molecule with one electronic spin often forms a π-stacked dimer through molecular orbital interactions between two unpaired electrons. The bonding is recognized as a multicentered two-electron interaction between the two π-conjugated molecules. Here, we disclose a multicentered bonding interaction between two antiaromatic molecules involving four electrons. We have synthesized an antiaromatic porphyrin analogue, Ni(II) bis(pentafluorophenyl)norcorrole. Its dimer adopts a face-to-face stacked structure with an extremely short stacking distance of 2.97 Å. The close stacking originates from a multicenter four-electron bonding interaction between the two molecules. The bonding electrons were experimentally observed via synchrotron X-ray diffraction analysis and corroborated by theoretical calculations. The intermolecular interaction of the molecular orbitals imparts the stacked dimer with aromatic character that is distinctly different from that of its monomer.

3.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139291

RESUMEN

The photoinduced crawling motion of crystals is a continuous motion that azobenzene molecular crystals exhibit under light irradiation. Such motion enables object manipulation at the microscale with a simple setup of fixed LED light sources. Transportation of nano-/micromaterials using photoinduced crawling motion has recently been reported. However, the details of the motion mechanism have not been revealed so far. Herein, we report visualization of the dynamics of fine particles in 4-(methylamino)azobenzene (4-MAAB) crystals under light irradiation via diffracted X-ray tracking (DXT). Continuously repeated melting and recrystallization of 4-MAAB crystals under light irradiation results in the flow of liquid 4-MAAB. Zinc oxide (ZnO) particles were introduced inside the 4-MAAB crystals to detect diffracted X-rays. The ZnO particles rotate with the flow of liquid 4-MAAB. By using white X-rays with a wide energy width, the rotation of each zinc oxide nanoparticle was detected as the movement of a bright spot in the X-ray diffraction pattern. It was clearly shown that the ZnO particles rotated increasingly as the irradiation light intensity increased. Furthermore, we also found anisotropy in the rotational direction of ZnO particles that occurred during the crawling motion of 4-MAAB crystals. It has become clear that the flow perpendicular to the supporting film of 4-MAAB crystals is enhanced inside the crystal during the crawling motion. DXT provides a unique means to elucidate the mechanism of photoinduced crawling motion of crystals.


Asunto(s)
Óxido de Zinc , Rayos X , Compuestos Azo/química , Rotación
4.
J Am Chem Soc ; 145(41): 22563-22576, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37796243

RESUMEN

Polymorphism, a phenomenon whereby disparate self-assembled products can be formed from identical molecules, has incited interest in the field of supramolecular polymers. Conventionally, the monomers that constitute supramolecular polymers are engineered to facilitate one-dimensional aggregation and, consequently, their polymorphism surfaces primarily when the states of assembly differ significantly. This engenders polymorphs of divergent dimensionalities such as one- and two-dimensional aggregates. Notwithstanding, realizing supramolecular polymer polymorphism, wherein polymorphs maintain one-dimensional aggregation, persists as a daunting challenge. In this work, we expound upon the manifestation of two supramolecular polymer polymorphs formed from a large discotic supramolecular monomer (rosette), which consists of six hydrogen-bonded molecules with an extended π-conjugated core. These polymorphs are generated in mixtures of chloroform and methylcyclohexane, attributable to distinctly different disc stacking arrangements. The face-to-face (minimal displacement) and offset (large displacement) stacking arrangements can be predicated on their distinctive photophysical properties. The face-to-face stacking results in a twisted helix structure. Conversely, the offset stacking induces inherent curvature in the supramolecular fiber, thereby culminating in a hollow helical coil (helicoid). While both polymorphs exhibit bistability in nonpolar solvent compositions, the face-to-face stacking attains stability purely in a kinetic sense within a polar solvent composition and undergoes conversion into offset stacking through a dislocation of stacked rosettes. This occurs without the dissociation and nucleation of monomers, leading to unprecedented helicoidal folding of supramolecular polymers. Our findings augment our understanding of supramolecular polymer polymorphism, but they also highlight a distinctive method for achieving helicoidal folding in supramolecular polymers.

5.
Inorg Chem ; 62(39): 16222-16227, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37724933

RESUMEN

Two mononuclear Ni(II) complexes (1 and 2) have been found to display color changes upon coordination/decoordination of pyridine, resulting in their structural transformation between square-planar and octahedral geometries as well as a change in their spin state. Compound 1 changes between red (1r) and yellow (1y) upon exposure to or elimination of pyridine, while 2 undergoes a two-step transformation, changing orange 2o (S = 0) ⇄ gray 2g' (S = 1) → yellow 2y' (S = 1) depending on the reaction time. The first step (2o → 2g') takes less than 45 min, which is significantly faster than the previously reported reaction time of 1 day for a Ni(II) complex/pyridine vapor system. Compound 2o reacting with pyridine can be easily prepared by dispersing 2g in methanol instead of annealing at high temperatures (130 °C), which can be applied to develop chemical sensors for pyridine utilizing color changes and/or magnetic switching.

6.
J Am Chem Soc ; 145(37): 20485-20491, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37599601

RESUMEN

CO2 reduction as an artificial photosynthetic system is a promising technology to produce green energies and chemicals because it uses light energy to convert H2O and CO2 into valuable products such as CO, HCOOH, CH3OH, CH4, and preferably higher hydrocarbons. In photocatalytic reduction, water should be used as hydrogen and electron sources for CO2 reduction. Moreover, CH4 formation is an attractive and challenging topic because of the eight-electron-reducing product of CO2. Herein, we report the development of a new Rh-Ru cocatalyst decorated on an alkaline earth-doped NaTaO3 surface for the photocatalytic CO2 reduction to form CH4 using water as an electron donor. CH4 was obtained by a photocatalytic "uphill" reaction of CO2 reduction using Rh-Ru cocatalyst-loaded NaTaO3:Sr, water, and CO2 in an aqueous suspension system. About 10% of a selectivity (electronic efficiency) was obtained for CH4 formation under ambient conditions accompanied with O2 evolution of the oxidation product of H2O.

7.
Sci Adv ; 9(19): eadg8202, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37172082

RESUMEN

Stacked teacups inspired the idea that columnar assemblies of stacked bowl-shaped molecules may exhibit a unique dynamic behavior, unlike usual assemblies of planar disc- and rod-shaped molecules. On the basis of the molecular design concept for creating higher-order discotic liquid crystals, found in our group, we synthesized a sumanene derivative with octyloxycarbonyl side chains. This molecule forms an ordered hexagonal columnar mesophase, but unexpectedly, the columnar assembly is very soft, similar to sugar syrup. It displays, upon application of a shear force on solid substrates, a flexible bending motion with continuous angle variations of bowl-stacked columns while preserving the two-dimensional hexagonal order. In general, alignment control of higher-order liquid crystals is difficult to achieve due to their high viscosity. The present system that brings together higher structural order and mechanical softness will spark interest in bowl-shaped molecules as a component for developing higher-order liquid crystals with unique mechanical and stimuli-responsive properties.

8.
J Am Chem Soc ; 145(4): 2135-2141, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36210512

RESUMEN

Stacked-ring aromaticity arising from the close stacking of antiaromatic π-systems has recently received considerable attention. Here, we realize stacked-ring aromaticity via a rational supramolecular approach. A nanocapsule composed of bent polyaromatic amphiphiles was employed to encapsulate several antiaromatic norcorrole Ni(II) complexes (NCs) in water. The resulting micellar capsules display high stability toward heating and concentration change. The encapsulation resulted in the appearance of a broad absorption band in the near-infrared region, which is characteristic of norcorroles with close face-to-face stacking. Importantly, a meso-isopropyl NC, which does not exhibit π-stacking even in a concentrated solution or the crystalline phase, adopted π-stacking with stacked-ring aromaticity in the supramolecular micellar capsule.

9.
Chem Sci ; 13(34): 9891-9901, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36128239

RESUMEN

The alignment control of discotic columnar liquid crystals (LCs), featuring a low motility of the constituent molecules and thus having a large viscosity, is a challenging task. Here we show that triphenylene hexacarboxylic ester, when functionalized with hybrid side chains consisting of alkyl and perfluoroalkyl groups in an appropriate ratio, gives a hexagonal columnar (Colh) LC capable of selectively forming large-area uniform homeotropic or homogeneous alignments, upon cooling from its isotropic melt or upon application of a shear force at its LC temperature, respectively. In addition to the alignment switching ability, each alignment state remains persistent unless the LC is heated to its melting temperature. In situ X-ray diffraction analysis under the application of a shear force, together with polarized optical microscopy observations, revealed how the columnar assembly is changed during the alignment-switching process. The remarkable behavior of the discotic LC is discussed in terms of its rheological properties.

10.
ACS Appl Mater Interfaces ; 14(17): 19756-19765, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35451831

RESUMEN

Wurtzite-structured Ga1-xZnx(N,O,F) was successfully synthesized by nitridation of mixtures of a Ga-containing oxide and ZnF2. The addition of ZnF2 lowered the nitridation temperature for the synthesis of Ga1-xZnx(N,O,F) to 823 K, even when bulk ZnGa2O4 was used as a paired precursor. This lowering of the synthesis temperature was ascribed to the enhancement of nitridation through the addition of fluorine. The low-temperature nitridation achieved by the addition of fluorine suppressed the volatilization of Zn compared with that during the synthesis of a GaN:ZnO solid solution by a conventional high-temperature ammonolysis reaction. The higher concentration of Zn, as well as the higher N concentration in Ga1-xZnx(N,O,F) achieved through the fluorine-assisted nitridation, led to a redshift of the absorption edge of Ga1-xZnx(N,O,F) to 560 nm compared with that of GaN:ZnO synthesized by the conventional ammonolysis reaction. The visible-light absorption of Ga1-xZnx(N,O,F) can be used to drive the photoelectrochemical oxidation of water.

11.
Angew Chem Int Ed Engl ; 60(52): 26986-26993, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34623014

RESUMEN

Synthesis of one-dimensional nanofibers with distinct topological (higher-order structural) domains in the same main chain is one of the challenging topics in modern supramolecular polymer chemistry. Non-uniform structural transformation of supramolecular polymer chains by external stimuli may enable preparation of such nanofibers. To demonstrate feasibility of this post-polymerization strategy, we prepared a photoresponsive helically folded supramolecular polymers from a barbiturate monomer containing an azobenzene-embedded rigid π-conjugated scaffold. In contrast to previous helically folded supramolecular polymers composed of a more flexible azobenzene monomer, UV-light induced unfolding of the newly prepared helically folded supramolecular polymers occurred nonuniformly, affording topological block copolymers consisting of folded and unfolded domains. The formation of such blocky copolymers indicates that the photoinduced unfolding of the helically folded structures initiates from relatively flexible parts such as termini or defects. Spontaneous refolding of the unfolded domains was observed after visible-light irradiation followed by aging to restore fully folded structures.

12.
J Am Chem Soc ; 143(15): 5845-5854, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33755463

RESUMEN

Helical folding of randomly coiled linear polymers is an essential organization process not only for biological polypeptides but also for synthetic functional polymers. Realization of this dynamic process in supramolecular polymers (SPs) is, however, a formidable challenge because of their inherent lability of main chains upon changing an external environment that can drive the folding process (e.g., solvent, concentration, and temperature). We herein report a photoinduced reversible folding/unfolding of rosette-based SPs driven by photoisomerization of a diarylethene (DAE). Temperature-controlled supramolecular polymerization of a barbiturate-functionalized DAE (open isomer) in nonpolar solvent results in the formation of intrinsically curved, but randomly coiled, SPs due to the presence of defects. Irradiation of the randomly coiled SPs with UV light causes efficient ring-closure reaction of the DAE moieties, which induces helical folding of the randomly coiled structures into helicoidal ones, as evidenced by atomic force microscopy and small-angle X-ray scattering. The helical folding is driven by internal structure ordering of the SP fiber that repairs the defects and interloop interaction occurring only for the resulting helicoidal structure. In contrast, direct supramolecular polymerization of the ring-closed DAE monomers by temperature control affords linearly extended ribbon-like SPs lacking intrinsic curvature that are thermodynamically less stable compared to the helicoidal SPs. The finding represents an important concept applicable to other SP systems; that is, postpolymerization (photo)reaction of preorganized kinetic structures can lead to more thermodynamically stable structures that are inaccessible directly through temperature-controlled protocols.


Asunto(s)
Etilenos/química , Polímeros/química , Rayos Ultravioleta , Barbitúricos/química , Isomerismo , Sustancias Macromoleculares/química , Microscopía de Fuerza Atómica , Polimerizacion , Temperatura , Termodinámica
13.
Chem Sci ; 11(24): 6183-6192, 2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32874515

RESUMEN

Metaelectric transition, i.e. an abrupt increase in polarization with an electric field is just a phase change phenomenon in dielectrics and attracts increasing interest for practical applications such as electrical energy storage and highly deformable transducers. Here we demonstrate that both field-induced metaelectric transitions and temperature-induced phase transitions occur successively on a crystal of highly polarizable bis-(1H-benzimidazol-2-yl)-methane (BI2C) molecules. In each molecule, two switchable polar subunits are covalently linked with each other. By changing the NH hydrogen location, the low- and high-dipole states of each molecule can be interconverted, turning on and off the polarization of hydrogen-bonded molecular ribbons. In the low-temperature phase III, the tetragonal crystal lattice comprises orthogonally crossed arrays of polar ribbons made up of a ladder-like hydrogen-bond network of fully polarized molecules. The single-step metaelectric transition from this phase III corresponds to the forced alignment of antiparallel dipoles typical of antiferroelectrics. By the transition to the intermediate-temperature phase II, the polarity is turned off for half of the ribbons so that the nonpolar and polar ribbons are orthogonal to each other. Considering also the ferroelastic-like crystal twinning, the doubled steps of metaelectric transitions observed in the phase II can be explained by the additional switching at different critical fields, by which the nonpolar ribbons undergo "metadielectric" molecular transformation restoring the strong polarization. This mechanism inevitably brings about exotic phase change phenomena transforming the multi-domain state of a homogeneous phase into an inhomogeneous (phase mixture) state.

14.
Nat Commun ; 11(1): 3578, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681045

RESUMEN

Connecting molecular-level phenomena to larger scales and, ultimately, to sophisticated molecular systems that resemble living systems remains a considerable challenge in supramolecular chemistry. To this end, molecular self-assembly at higher hierarchical levels has to be understood and controlled. Here, we report unusual self-assembled structures formed from a simple porphyrin derivative. Unexpectedly, this formed a one-dimensional (1D) supramolecular polymer that coiled to give an Archimedean spiral. Our analysis of the supramolecular polymerization by using mass-balance models suggested that the Archimedean spiral is formed at high concentrations of the monomer, whereas other aggregation types might form at low concentrations. Gratifyingly, we discovered that our porphyrin-based monomer formed supramolecular concentric toroids at low concentrations. Moreover, a mechanistic insight into the self-assembly process permitted a controlled synthesis of these concentric toroids. This study both illustrates the richness of self-assembled structures at higher levels of hierarchy and demonstrates a topological effect in noncovalent synthesis.

15.
Nat Commun ; 11(1): 1623, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32238806

RESUMEN

Molecular recognition to preorganize noncovalently polymerizable supramolecular complexes is a characteristic process of natural supramolecular polymers, and such recognition processes allow for dynamic self-alteration, yielding complex polymer systems with extraordinarily high efficiency in their targeted function. We herein show an example of such molecular recognition-controlled kinetic assembly/disassembly processes within artificial supramolecular polymer systems using six-membered hydrogen-bonded supramolecular complexes (rosettes). Electron-rich and poor monomers are prepared that kinetically coassemble through a temperature-controlled protocol into amorphous coaggregates comprising a diverse mixture of rosettes. Over days, the electrostatic interaction between two monomers induces an integrative self-sorting of rosettes. While the electron-rich monomer inherently forms toroidal homopolymers, the additional electrostatic interaction that can also guide rosette association allows helicoidal growth of supramolecular copolymers that are comprised of an alternating array of two monomers. Upon heating, the helicoidal copolymers undergo a catastrophic transition into amorphous coaggregates via entropy-driven randomization of the monomers in the rosette.

16.
Nat Commun ; 10(1): 4578, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31594942

RESUMEN

Supramolecular polymers have emerged in the last decade as highly accessible polymeric nanomaterials. An important step toward finely designed nanomaterials with versatile functions, such as those of natural proteins, is intricate topological control over their main chains. Herein, we report the facile one-shot preparation of supramolecular copolymers involving segregated secondary structures. By cooling non-polar solutions containing two monomers that individually afford helically folded and linearly extended secondary structures, we obtain unique nanofibers with coexisting distinct secondary structures. A spectroscopic analysis of the formation process of such topologically chimeric fibers reveals that the monomer composition varies gradually during the polymerization due to the formation of heteromeric hydrogen-bonded intermediates. We further demonstrate the folding of these chimeric fibers by light-induced deformation of the linearly extended segments.

17.
J Am Chem Soc ; 141(33): 13196-13202, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31348852

RESUMEN

Kinetically formed metastable molecular assemblies have attracted increasing interest especially in the field of supramolecular polymers. In most cases, metastable assemblies are ensemblies of aggregates based on the same supramolecular motif but with different lengths or sizes, and therefore their kinetic stabilities are experimentally indistinguishable. Herein, we demonstrate a topological effect on kinetic stabilities in a complex mixture of metastable supramolecular polymers. Our azobenzene-incorporated monomer upon heating in nonpolar solvent at ambient temperature kinetically forms complex mixtures of supramolecular polymers with cyclized and open-ended randomly coiled topologies. Upon further heating, we obtained thermodynamically stable twisted fibrils organizing into crystalline fibers. Through the direct visualization of the complex supramolecular polymer mixtures by atomic force microscopy, we demonstrate that the cyclized supramolecular polymer has superior kinetic stability compared to the open-ended species toward the thermal transformation into twisted fibrils. Since the superior kinetic stability of the cyclized species can be attributed to the absence of aggregate termini, we could convert them fully into the thermodynamic species through photoinduced opening of the cyclized structures.

18.
Nat Mater ; 18(3): 266-272, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30664694

RESUMEN

The self-assembly of organic molecules into supramolecular materials with structural ordering beyond the nanometre scale is challenging. Here, we report the spontaneous self-assembly of a chiral discotic triphenylene derivative into millimetre-sized droplets. The structure of the droplets is characterized by high positional and orientational ordering and a three-dimensional integrity similar to that of single crystals. Notwithstanding, these assemblies slide when placed on a vertical substrate demonstrating their fluid nature. X-ray imaging shows that during the sliding process the internal crystal-like structure is maintained and that the droplets undergo clockwise or counterclockwise unidirectional rotation, depending on the chirality of their molecular components. Rheological measurements suggest that this rotational behaviour might result from the distinct yield stress between the (R)- and (S)-enantiomers. Overall, our findings demonstrate that molecular chirality can determine the movement direction of a supramolecular structure, thus expanding the fundamental understanding of the structure and dynamics of soft materials.

19.
Sci Adv ; 4(9): eaat8466, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30202785

RESUMEN

Folding one-dimensional polymer chains into well-defined topologies represents an important organization process for proteins, but replicating this process for supramolecular polymers remains a challenging task. We report supramolecular polymers that can fold into protein-like topologies. Our approach is based on curvature-forming supramolecular rosettes, which affords kinetic control over the extent of helical folding in the resulting supramolecular fibers by changing the cooling rate for polymerization. When using a slow cooling rate, we obtained misfolded fibers containing a minor amount of helical domains that folded on a time scale of days into unique topologies reminiscent of the protein tertiary structures. Thermodynamic analysis of fibers with varying degrees of folding revealed that the folding is accompanied by a large enthalpic gain. The self-folding proceeds via ordering of misfolded domains in the main chain using helical domains as templates, as fully misfolded fibers prepared by a fast cooling rate do not self-fold.


Asunto(s)
Polímeros/química , Barbitúricos/química , Ciclohexanos/química , Dispersión Dinámica de Luz , Cinética , Espectroscopía de Resonancia Magnética , Microscopía de Fuerza Atómica , Polimerizacion , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Espectrofotometría Ultravioleta , Termodinámica , Difracción de Rayos X
20.
Nat Commun ; 8: 15254, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28488694

RESUMEN

Unlike classical covalent polymers, one-dimensionally (1D) elongated supramolecular polymers (SPs) can be encoded with high degrees of internal order by the cooperative aggregation of molecular subunits, which endows these SPs with extraordinary properties and functions. However, this internal order has not yet been exploited to generate and dynamically control well-defined higher-order (secondary) conformations of the SP backbone, which may induce functionality that is comparable to protein folding/unfolding. Herein, we report light-induced conformational changes of SPs based on the 1D exotic stacking of hydrogen-bonded azobenzene hexamers. The stacking causes a unique internal order that leads to spontaneous curvature, which allows accessing conformations that range from randomly folded to helically folded coils. The reversible photoisomerization of the azobenzene moiety destroys or recovers the curvature of the main chain, which demonstrates external control over the SP conformation that may ultimately lead to biological functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA