Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int Rev Neurobiol ; 176: 75-86, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38802183

RESUMEN

The majority of amyotrophic lateral sclerosis (ALS) is caused by a complex gene-environment interaction. Despite high estimates of heritability, the genetic basis of disease in the majority of ALS patients are unknown. This limits the development of targeted genetic therapies which require an understanding of patient-specific genetic drivers. There is good evidence that the majority of these missing genetic risk factors are likely to be found within the non-coding genome. However, a major challenge in the discovery of non-coding risk variants is determining which variants are functional in which specific CNS cell type. We summarise current discoveries of ALS-associated genetic drivers within the non-coding genome and we make the case that improved cell-specific annotation of genomic function is required to advance this field, particularly via single-cell epigenetic profiling and spatial transcriptomics. We highlight the example of TBK1 where an apparent paradox exists between pathogenic coding variants which cause loss of protein function, and protective non-coding variants which cause reduced gene expression; the paradox is resolved when it is understood that the non-coding variants are acting primarily via change in gene expression within microglia, and the effect of coding variants is most prominent in neurons. We propose that cell-specific functional annotation of ALS-associated genetic variants will accelerate discovery of the genetic architecture underpinning disease in the vast majority of patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Humanos , Animales , Predisposición Genética a la Enfermedad/genética
2.
medRxiv ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633814

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease caused by the selective and progressive death of motor neurons (MNs). Understanding the genetic and molecular factors influencing ALS survival is crucial for disease management and therapeutics. In this study, we introduce a deep learning-powered genetic analysis framework to link rare noncoding genetic variants to ALS survival. Using data from human induced pluripotent stem cell (iPSC)-derived MNs, this method prioritizes functional noncoding variants using deep learning, links cis-regulatory elements (CREs) to target genes using epigenomics data, and integrates these data through gene-level burden tests to identify survival-modifying variants, CREs, and genes. We apply this approach to analyze 6,715 ALS genomes, and pinpoint four novel rare noncoding variants associated with survival, including chr7:76,009,472:C>T linked to CCDC146. CRISPR-Cas9 editing of this variant increases CCDC146 expression in iPSC-derived MNs and exacerbates ALS-specific phenotypes, including TDP-43 mislocalization. Suppressing CCDC146 with an antisense oligonucleotide (ASO), showing no toxicity, completely rescues ALS-associated survival defects in neurons derived from sporadic ALS patients and from carriers of the ALS-associated G4C2-repeat expansion within C9ORF72. ASO targeting of CCDC146 may be a broadly effective therapeutic approach for ALS. Our framework provides a generic and powerful approach for studying noncoding genetics of complex human diseases.

3.
Heliyon ; 10(3): e24975, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38317984

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving selective vulnerability of energy-intensive motor neurons (MNs). It has been unclear whether mitochondrial function is an upstream driver or a downstream modifier of neurotoxicity. We separated upstream genetic determinants of mitochondrial function, including genetic variation within the mitochondrial genome or autosomes; from downstream changeable factors including mitochondrial DNA copy number (mtCN). Across three cohorts including 6,437 ALS patients, we discovered that a set of mitochondrial haplotypes, chosen because they are linked to measurements of mitochondrial function, are a determinant of ALS survival following disease onset, but do not modify ALS risk. One particular haplotype appeared to be neuroprotective and was significantly over-represented in two cohorts of long-surviving ALS patients. Causal inference for mitochondrial function was achievable using mitochondrial haplotypes, but not autosomal SNPs in traditional Mendelian randomization (MR). Furthermore, rare loss-of-function genetic variants within, and reduced MN expression of, ACADM and DNA2 lead to ∼50 % shorter ALS survival; both proteins are implicated in mitochondrial function. Both mtCN and cellular vulnerability are linked to DNA2 function in ALS patient-derived neurons. Finally, MtCN responds dynamically to the onset of ALS independently of mitochondrial haplotype, and is correlated with disease severity. We conclude that, based on the genetic measures we have employed, mitochondrial function is a therapeutic target for amelioration of disease severity but not prevention of ALS.

4.
Life Sci Alliance ; 6(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36241425

RESUMEN

New therapeutic targets are a valuable resource for treatment of SARS-CoV-2 viral infection. Genome-wide association studies have identified risk loci associated with COVID-19, but many loci are associated with comorbidities and are not specific to host-virus interactions. Here, we identify and experimentally validate a link between reduced expression of EXOSC2 and reduced SARS-CoV-2 replication. EXOSC2 was one of the 332 host proteins examined, all of which interact directly with SARS-CoV-2 proteins. Aggregating COVID-19 genome-wide association studies statistics for gene-specific eQTLs revealed an association between increased expression of EXOSC2 and higher risk of clinical COVID-19. EXOSC2 interacts with Nsp8 which forms part of the viral RNA polymerase. EXOSC2 is a component of the RNA exosome, and here, LC-MS/MS analysis of protein pulldowns demonstrated interaction between the SARS-CoV-2 RNA polymerase and most of the human RNA exosome components. CRISPR/Cas9 introduction of nonsense mutations within EXOSC2 in Calu-3 cells reduced EXOSC2 protein expression and impeded SARS-CoV-2 replication without impacting cellular viability. Targeted depletion of EXOSC2 may be a safe and effective strategy to protect against clinical COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/genética , Cromatografía Liquida , Codón sin Sentido , ARN Polimerasas Dirigidas por ADN/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Estudio de Asociación del Genoma Completo , Humanos , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , SARS-CoV-2/genética , Espectrometría de Masas en Tándem , Proteinas del Complejo de Replicasa Viral , Replicación Viral/genética
5.
Cell Syst ; 13(8): 598-614.e6, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35690068

RESUMEN

The determinants of severe COVID-19 in healthy adults are poorly understood, which limits the opportunity for early intervention. We present a multiomic analysis using machine learning to characterize the genomic basis of COVID-19 severity. We use single-cell multiome profiling of human lungs to link genetic signals to cell-type-specific functions. We discover >1,000 risk genes across 19 cell types, which account for 77% of the SNP-based heritability for severe disease. Genetic risk is particularly focused within natural killer (NK) cells and T cells, placing the dysfunction of these cells upstream of severe disease. Mendelian randomization and single-cell profiling of human NK cells support the role of NK cells and further localize genetic risk to CD56bright NK cells, which are key cytokine producers during the innate immune response. Rare variant analysis confirms the enrichment of severe-disease-associated genetic variation within NK-cell risk genes. Our study provides insights into the pathogenesis of severe COVID-19 with potential therapeutic targets.


Asunto(s)
COVID-19 , Adulto , Antígeno CD56/análisis , Antígeno CD56/metabolismo , COVID-19/genética , Citocinas/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Células Asesinas Naturales/química , Células Asesinas Naturales/metabolismo , Polimorfismo de Nucleótido Simple
6.
Brain Commun ; 4(2): fcac069, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35441136

RESUMEN

Amyotrophic lateral sclerosis is a rapidly progressive neurodegenerative disease that affects 1/350 individuals in the United Kingdom. The cause of amyotrophic lateral sclerosis is unknown in the majority of cases. Two-sample Mendelian randomization enables causal inference between an exposure, such as the serum concentration of a specific metabolite, and disease risk. We obtained genome-wide association study summary statistics for serum concentrations of 566 metabolites which were population matched with a genome-wide association study of amyotrophic lateral sclerosis. For each metabolite, we performed Mendelian randomization using an inverse variance weighted estimate for significance testing. After stringent Bonferroni multiple testing correction, our unbiased screen revealed three metabolites that were significantly linked to the risk of amyotrophic lateral sclerosis: Estrone-3-sulphate and bradykinin were protective, which is consistent with literature describing a male preponderance of amyotrophic lateral sclerosis and a preventive effect of angiotensin-converting enzyme inhibitors which inhibit the breakdown of bradykinin. Serum isoleucine was positively associated with amyotrophic lateral sclerosis risk. All three metabolites were supported by robust Mendelian randomization measures and sensitivity analyses; estrone-3-sulphate and isoleucine were confirmed in a validation amyotrophic lateral sclerosis genome-wide association study. Estrone-3-sulphate is metabolized to the more active estradiol by the enzyme 17ß-hydroxysteroid dehydrogenase 1; further, Mendelian randomization demonstrated a protective effect of estradiol and rare variant analysis showed that missense variants within HSD17B1, the gene encoding 17ß-hydroxysteroid dehydrogenase 1, modify risk for amyotrophic lateral sclerosis. Finally, in a zebrafish model of C9ORF72-amyotrophic lateral sclerosis, we present evidence that estradiol is neuroprotective. Isoleucine is metabolized via methylmalonyl-CoA mutase encoded by the gene MMUT in a reaction that consumes vitamin B12. Multivariable Mendelian randomization revealed that the toxic effect of isoleucine is dependent on the depletion of vitamin B12; consistent with this, rare variants which reduce the function of MMUT are protective against amyotrophic lateral sclerosis. We propose that amyotrophic lateral sclerosis patients and family members with high serum isoleucine levels should be offered supplementation with vitamin B12.

7.
bioRxiv ; 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35291294

RESUMEN

New therapeutic targets are a valuable resource in the struggle to reduce the morbidity and mortality associated with the COVID-19 pandemic, caused by the SARS-CoV-2 virus. Genome-wide association studies (GWAS) have identified risk loci, but some loci are associated with co-morbidities and are not specific to host-virus interactions. Here, we identify and experimentally validate a link between reduced expression of EXOSC2 and reduced SARS-CoV-2 replication. EXOSC2 was one of 332 host proteins examined, all of which interact directly with SARS-CoV-2 proteins; EXOSC2 interacts with Nsp8 which forms part of the viral RNA polymerase. Lung-specific eQTLs were identified from GTEx (v7) for each of the 332 host proteins. Aggregating COVID-19 GWAS statistics for gene-specific eQTLs revealed an association between increased expression of EXOSC2 and higher risk of clinical COVID-19 which survived stringent multiple testing correction. EXOSC2 is a component of the RNA exosome and indeed, LC-MS/MS analysis of protein pulldowns demonstrated an interaction between the SARS-CoV-2 RNA polymerase and the majority of human RNA exosome components. CRISPR/Cas9 introduction of nonsense mutations within EXOSC2 in Calu-3 cells reduced EXOSC2 protein expression, impeded SARS-CoV-2 replication and upregulated oligoadenylate synthase ( OAS) genes, which have been linked to a successful immune response against SARS-CoV-2. Reduced EXOSC2 expression did not reduce cellular viability. OAS gene expression changes occurred independent of infection and in the absence of significant upregulation of other interferon-stimulated genes (ISGs). Targeted depletion or functional inhibition of EXOSC2 may be a safe and effective strategy to protect at-risk individuals against clinical COVID-19.

8.
Neuron ; 110(6): 992-1008.e11, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35045337

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a complex disease that leads to motor neuron death. Despite heritability estimates of 52%, genome-wide association studies (GWASs) have discovered relatively few loci. We developed a machine learning approach called RefMap, which integrates functional genomics with GWAS summary statistics for gene discovery. With transcriptomic and epigenetic profiling of motor neurons derived from induced pluripotent stem cells (iPSCs), RefMap identified 690 ALS-associated genes that represent a 5-fold increase in recovered heritability. Extensive conservation, transcriptome, network, and rare variant analyses demonstrated the functional significance of candidate genes in healthy and diseased motor neurons and brain tissues. Genetic convergence between common and rare variation highlighted KANK1 as a new ALS gene. Reproducing KANK1 patient mutations in human neurons led to neurotoxicity and demonstrated that TDP-43 mislocalization, a hallmark pathology of ALS, is downstream of axonal dysfunction. RefMap can be readily applied to other complex diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Proteínas Adaptadoras Transductoras de Señales/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Muerte Celular/genética , Proteínas del Citoesqueleto/genética , Estudio de Asociación del Genoma Completo , Humanos , Células Madre Pluripotentes Inducidas/patología , Neuronas Motoras/patología
9.
Brain ; 145(3): 832-842, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-34791088

RESUMEN

Amyotrophic lateral sclerosis is a relatively common and rapidly progressive neurodegenerative disease that, in the majority of cases, is thought to be determined by a complex gene-environment interaction. Exponential growth in the number of performed genome-wide association studies combined with the advent of Mendelian randomization is opening significant new opportunities to identify environmental exposures that increase or decrease the risk of amyotrophic lateral sclerosis. Each of these discoveries has the potential to shape new therapeutic interventions. However, to do so, rigorous methodological standards must be applied in the performance of Mendelian randomization. We have reviewed Mendelian randomization studies performed in amyotrophic lateral sclerosis to date. We identified 20 Mendelian randomization studies, including evaluation of physical exercise, adiposity, cognitive performance, immune function, blood lipids, sleep behaviours, educational attainment, alcohol consumption, smoking and type 2 diabetes mellitus. We have evaluated each study using gold standard methodology supported by the Mendelian randomization literature and the STROBE-Mendelian randomization checklist. Where discrepancies exist between Mendelian randomization studies, we suggest the underlying reasons. A number of studies conclude that there is a causal link between blood lipids and risk of amyotrophic lateral sclerosis; replication across different datasets and even different populations adds confidence. For other putative risk factors, such as smoking and immune function, Mendelian randomization studies have provided cause for doubt. We highlight the use of positive control analyses in choosing exposure single nucleotide polymorphisms (SNPs) to make up the Mendelian randomization instrument, use of SNP clumping to avoid false positive results due to SNPs in linkage and the importance of multiple testing correction. We discuss the implications of survival bias for study of late age of onset diseases such as amyotrophic lateral sclerosis and make recommendations to mitigate this potentially important confounder. For Mendelian randomization to be useful to the amyotrophic lateral sclerosis field, high methodological standards must be applied to ensure reproducibility. Mendelian randomization is already an impactful tool, but poor-quality studies will lead to incorrect interpretations by a field that includes non-statisticians, wasted resources and missed opportunities.


Asunto(s)
Esclerosis Amiotrófica Lateral , Diabetes Mellitus Tipo 2 , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Lípidos , Análisis de la Aleatorización Mendeliana/métodos , Reproducibilidad de los Resultados
10.
Curr Opin Neurol ; 34(5): 756-764, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34343141

RESUMEN

PURPOSE OF REVIEW: Amyotrophic lateral sclerosis (ALS) is an archetypal complex disease wherein disease risk and severity are, for the majority of patients, the product of interaction between multiple genetic and environmental factors. We are in a period of unprecedented discovery with new large-scale genome-wide association study (GWAS) and accelerating discovery of risk genes. However, much of the observed heritability of ALS is undiscovered and we are not yet approaching elucidation of the total genetic architecture, which will be necessary for comprehensive disease subclassification. RECENT FINDINGS: We summarize recent developments and discuss the future. New machine learning models will help to address nonlinear genetic interactions. Statistical power for genetic discovery may be boosted by reducing the search-space using cell-specific epigenetic profiles and expanding our scope to include genetically correlated phenotypes. Structural variation, somatic heterogeneity and consideration of environmental modifiers represent significant challenges which will require integration of multiple technologies and a multidisciplinary approach, including clinicians, geneticists and pathologists. SUMMARY: The move away from fully penetrant Mendelian risk genes necessitates new experimental designs and new standards for validation. The challenges are significant, but the potential reward for successful disease subclassification is large-scale and effective personalized medicine.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Estudio de Asociación del Genoma Completo , Humanos , Aprendizaje Automático , Fenotipo
11.
medRxiv ; 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34189540

RESUMEN

The determinants of severe COVID-19 in non-elderly adults are poorly understood, which limits opportunities for early intervention and treatment. Here we present novel machine learning frameworks for identifying common and rare disease-associated genetic variation, which outperform conventional approaches. By integrating single-cell multiomics profiling of human lungs to link genetic signals to cell-type-specific functions, we have discovered and validated over 1,000 risk genes underlying severe COVID-19 across 19 cell types. Identified risk genes are overexpressed in healthy lungs but relatively downregulated in severely diseased lungs. Genetic risk for severe COVID-19, within both common and rare variants, is particularly enriched in natural killer (NK) cells, which places these immune cells upstream in the pathogenesis of severe disease. Mendelian randomization indicates that failed NKG2D-mediated activation of NK cells leads to critical illness. Network analysis further links multiple pathways associated with NK cell activation, including type-I-interferon-mediated signalling, to severe COVID-19. Our rare variant model, PULSE, enables sensitive prediction of severe disease in non-elderly patients based on whole-exome sequencing; individualized predictions are accurate independent of age and sex, and are consistent across multiple populations and cohorts. Risk stratification based on exome sequencing has the potential to facilitate post-exposure prophylaxis in at-risk individuals, potentially based around augmentation of NK cell function. Overall, our study characterizes a comprehensive genetic landscape of COVID-19 severity and provides novel insights into the molecular mechanisms of severe disease, leading to new therapeutic targets and sensitive detection of at-risk individuals.

12.
EBioMedicine ; 68: 103397, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34051439

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a universally fatal neurodegenerative disease. ALS is determined by gene-environment interactions and improved understanding of these interactions may lead to effective personalised medicine. The role of physical exercise in the development of ALS is currently controversial. METHODS: First, we dissected the exercise-ALS relationship in a series of two-sample Mendelian randomisation (MR) experiments. Next we tested for enrichment of ALS genetic risk within exercise-associated transcriptome changes. Finally, we applied a validated physical activity questionnaire in a small cohort of genetically selected ALS patients. FINDINGS: We present MR evidence supporting a causal relationship between genetic liability to frequent and strenuous leisure-time exercise and ALS using a liberal instrument (multiplicative random effects IVW, p=0.01). Transcriptomic analysis revealed that genes with altered expression in response to acute exercise are enriched with known ALS risk genes (permutation test, p=0.013) including C9ORF72, and with ALS-associated rare variants of uncertain significance. Questionnaire evidence revealed that age of onset is inversely proportional to historical physical activity for C9ORF72-ALS (Cox proportional hazards model, Wald test p=0.007, likelihood ratio test p=0.01, concordance=74%) but not for non-C9ORF72-ALS. Variability in average physical activity was lower in C9ORF72-ALS compared to both non-C9ORF72-ALS (F-test, p=0.002) and neurologically normal controls (F-test, p=0.049) which is consistent with a homogeneous effect of physical activity in all C9ORF72-ALS patients. INTERPRETATION: Our MR approach suggests a positive causal relationship between ALS and physical exercise. Exercise is likely to cause motor neuron injury only in patients with a risk-genotype. Consistent with this we have shown that ALS risk genes are activated in response to exercise. In particular, we propose that G4C2-repeat expansion of C9ORF72 predisposes to exercise-induced ALS. FUNDING: We acknowledge support from the Wellcome Trust (JCK, 216596/Z/19/Z), NIHR (PJS, NF-SI-0617-10077; IS-BRC-1215-20017) and NIH (MPS, CEGS 5P50HG00773504, 1P50HL083800, 1R01HL101388, 1R01-HL122939, S10OD025212, P30DK116074, and UM1HG009442).


Asunto(s)
Proteína C9orf72/genética , Ejercicio Físico/efectos adversos , Perfilación de la Expresión Génica/métodos , Análisis de la Aleatorización Mendeliana/métodos , Adulto , Edad de Inicio , Anciano , Esclerosis Amiotrófica Lateral/genética , Femenino , Interacción Gen-Ambiente , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA