RESUMEN
Chronic thromboembolic pulmonary hypertension (CTEPH) is marked by persistent blood clots in pulmonary arteries, leading to significant morbidity and mortality. Emerging evidence highlights the role of microRNAs (miRNAs) in pulmonary hypertension, though findings on miRNA expression in CTEPH remain limited and inconsistent. This systematic review evaluates miRNA expression changes in CTEPH and their direction. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we registered our protocol in International Prospective Register of Systematic Reviews (CRD42024524469). We included studies on miRNA expression in CTEPH with comparative or analytical designs, excluding nonhuman studies, interventions, non-English texts, conference abstracts, and editorials. Databases searched included PubMed, EMBASE, Scopus, CENTRAL, and ProQuest. The Quality Assessment of Diagnostic Accuracy Studies-2 tool assessed bias risk, and results were synthesized narratively. Of 313 unique studies, 39 full texts were reviewed, and 9 met inclusion criteria, totaling 235 participants. Blood samples were analysed using quantitative real time polymerase chain reaction. Seven miRNAs (miR-665, miR-3202, miR-382, miR-127, miR-664, miR-376c, miR-30) were uniformly upregulated, while nine (miR-20a-5p13, miR-17-5p, miR-93-5p, miR-22, let-7b, miR-106b-5p, miR-3148, miR-320-a, miR-320b) were downregulated in CTEPH patients. Two upregulated miRNAs (miR-127 and miR-30a) were consistently associated with previous evidence in the mechanism inducing the development of CTEPH, and five downregulated miRNAs (miR-20-a, miR-17-5p, miR-93-5p, let-7b, miR-106b-5p) were associated with a protective effect against CTEPH. We also identified gaps in the literature where the evidence for five upregulated miRNAs (miR-665, miR-3202, miR-382, miR-664 and miR-376c) and four downregulated miRNAs (miR-22, miR-3148, miR-320-a, and miR-320b) in CTEPH is conflicting. Our findings offer insights into the role of miRNAs in CTEPH and underscore the need for further research to validate these miRNAs as biomarkers or therapeutic targets.
RESUMEN
OBJECTIVE: The aim of this research is to understand the role of microRNA in cell cycle regulation especially on G2M Checkpoint from Luminal A samples Indonesian population. The profile results are used as biomarkers and therapeutic targets for breast cancer. For this reason, analysis was carried out on the comparison of miRNA expression between Luminal A and Fibroadenoma mamae (FAM) using Nanostring nCounter. METHODS: In this study, 5 (Formalin-Fixed Paraffin-Embedded) FFPE Luminal A tissues and 4 FFPE FAM samples were used. RNA was isolated from cancer tissue samples. Differential expression analysis of miRNA was conducted using Nanostring nCounter technology, subsequently followed by the expression analysis between FAM and Luminal A using nSolver softwere. Elevated expression levels of miRNAs were subjected to pathway and gene regulation analysis using KEGG and GSEA MsigDB databases. Data visualization was performed utilizing Cytoscape, NetworkAnalyst, and SRplot tools. RESULT: Based on 792 miRNAs detected on Nanostring nCounter, it was found that 60 miRNAs were upregulated and 6 miRNAs were downregulated. The 15 upregulated miRNAs analyzed show their role in the G2M Checkpoint through several pathways. The five miRNAs that significantly regulate the G2M Checkpoint are hsa-miR-196b-5p, hsa-miR-218-5p, hsa-miR-7-5p, hsa-miR-19a-5p, and hsa-miR-18a-5p Where each of these miRNAs regulates the CDKN1B gene. CONCLUSION: Significant differences in the expression of multiple miRNAs between Luminal A and FAM samples were observed. Furthermore, several of these miRNAs were found to modulate the G2M Checkpoint in Luminal A cancer by suppressing tumor suppressor genes.
Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Fibroadenoma , Puntos de Control de la Fase G2 del Ciclo Celular , Regulación Neoplásica de la Expresión Génica , MicroARNs , Humanos , MicroARNs/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Fibroadenoma/genética , Fibroadenoma/patología , Fibroadenoma/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Perfilación de la Expresión Génica , PronósticoRESUMEN
Ovarian cancer (OC) poses a significant health risk to women worldwide, with late diagnoses and chemotherapy resistance leading to high mortality rates. Despite several histological subtypes, the primary challenge remains the subtle nature of its symptoms, resulting in advanced-stage diagnosis and reduced treatment success rates. With platinum-based therapies showing relative efficacy but limited survival enhancements, the emergence of chemotherapy resistance during recurrence remains a critical obstacle. Precision medicine development has aimed to address these challenges in the context of the molecular diversity of OC. The present review explored the landscape of microRNA (miRNA)-mediated approaches in OC treatment. miRNAs have emerged as regulators of gene expression, serving as both oncogenes and tumor suppressors in OC. Dysregulated miRNAs are associated with disease progression and chemotherapy resistance, underscoring their significance in diagnosis and tailored treatment strategies. The present review extracted 295 publications from the PUBMED database. Out of the 73 eligible studies, 55 miRNAs were assessed. A total of three of these miRNAs were not associated with any disease or cancer, whilst eight were associated with OC, albeit also associated with other diseases. The present review encompassed three dimensions: i) The role of miRNAs in treatment efficacy; ii) the use of miRNAs to enhance therapy outcomes; and iii) adjunctive strategies for improved treatment results. Furthermore, it offered insights into potential avenues for improving OC treatment using miRNA-based approaches.
RESUMEN
Introduction: Hypoxia fuels cancer growth by supporting blood vessel formation, suppressing immune response, and helping cancer cells adapt to harsh surroundings. This happens when cancer cells react to low oxygen levels by activating hypoxia inducible factor-1 alpha (HIF-1α). High levels of HIF-1α can indicate an aggressive form of cancer and resistance to treatment in diffuse large B-cell lymphoma (DLBCL) patients. This study aimed to identify which factors are linked to HIF-1α distribution using immunohistochemistry in DLBCL patients. Method: This study conducted at a hospital in Indonesia between 2020 and 2022 aimed to investigate factors associated with HIF-1α expression in DLBCL patients. Newly diagnosed DLBCL patients were categorized into two groups based on HIF-1α distribution (<40% and ≥40%). Various factors were analyzed between the two groups using statistical tests such as χ2, Mann-Whitney U, and Spearman correlation tests. Results: In this study, 40 participants diagnosed with DLBCL were divided into two groups based on their HIF-1α distribution. The group with HIF-1α distribution greater than or equal to 40% had a higher incidence of extranodal involvement, including primary extranodal disease, compared to the group with less than 40% distribution. This difference was statistically significant. The authors also found that haemoglobin level statistically significant (P=0.041) in this research. The Spearman test analysis showed negative correlation between haemoglobin (P = <0.05, r = -0.44) and positive correlation of soluble interleukin-2 receptor (sIL-2R) (P = <0.05, r = 0.5) with vascular endothelial growth factor (VEGF), as well as between tumour volume (P = <0.05, r = 0.37) with sIL-2R. Additionally, there was a positive correlation between VEGF and sIL-2R (P = <0.05, r= 0.5). Conclusion: Patients with higher HIF-1α expression (≥40%) had more extranodal involvement and primary extranodal disease in this study of 40 DLBCL patients. Haemoglobin level, sIL-2R, and VEGF were also identified as potential biomarkers.
RESUMEN
D614G mutation plays a significant role in the transmissibility of SARS-CoV-2. Identification of other mutations related to D614G mutation within the Spike protein is pivotal as they might contribute to the pathogenicity of SARS-CoV-2. This study aims to analyze the mutation rate of furin cleavage site (FCS) region of Indonesian origin SARS-CoV-2 and to predict the effect of mutation against Spike priming efficiency by furin. A total of 375 sequences of Indonesian isolates obtained during the early pandemic were used for mutation analysis. Mutation analysis includes mutation pattern, variability, frequency of mutation, amino acid conservation, and mutation rate. The effect of mutation against Spike priming efficiency by furin protease from eight sequences with mutation in the FCS region was analyzed by protein-protein docking. We showed that mutations related to the G614 variant were increasing through time, in contrast to the D614 variant. The FCS region at the position 675-692 contained the most variable (66.67%) as well as the highest mutation frequency (85.92%) and has been observed to be the hotspot mutations linked to the D614G mutation. The D614G hotspot-FCS region (residue 600-700) had the highest amino acid change per site (20.8%) as well as the highest mutation rate as 1.34 × 10-2 substitution per site per year (95% CI 1.79 × 10-3-2.74 × 10-2), compared with other Spike protein regions. Mutations in the FCS region were the most common mutation found after the D614G mutation. These mutations were predicted to increase the Spike priming efficiency by furin. Thus, this study elucidates the importance of D614G mutation to other mutations located in the FCS region and their significance to Spike priming efficiency by furin. Supplementary Information: The online version contains supplementary material available at 10.1007/s13337-023-00827-w.
RESUMEN
Background: Congenital Talipes Equinovarus (CTEV) is a multitude of deformities involving equinus, varus, adductus, and cavus deformities. Clubfoot affects 1 in every 1000 infants born worldwide, with various incidences according to geographical areas. It has been previously hypothesized that the possible genetic role in Idiopathic CTEV (ICTEV) might have a treatment-resistant phenotype. However, the genetic involvement in recurrent ICTEV cases is yet to be determined. Aim: To systematically review existing literature regarding the discovery of genetic involvement in recurrent ICTEV to date to further understand the etiology of relapse. Methods: A comprehensive search was performed on medical databases, and the review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. A comprehensive search was performed on several medical databases: PubMed (MEDLINE), Scopus, the Cochrane Library, and European PMC on May 10, 2022. We included studies reporting patients with recurring idiopathic CTEV or CTEV of unknown cause after treatment, reporting whole-genetic sequencing, whole-exome sequencing, Polymerase Chain Reaction, or Western blot analysis as methods of genetic analysis (intervention) and providing results of idiopathic CTEV genetic involvement. Non-English studies, literature reviews, and irrelevant articles were excluded. Quality and risk of bias assessments were performed using Newcastle-Ottawa Quality Assessment Scale for non-randomized studies where appropriate. The authors discussed data extracted with the primary outcome of gene(s) frequency being reported of their involvement in recurrent ICTEV cases. Results: Three pieces of literature were included in this review. Two studies analyzed the genetic involvement in CTEV occurrence, while one analyzed the protein types found. Discussion: With included studies of less than five, we could not perform other forms of analysis apart from qualitatively. Conclusion: The rarity of literature exploring the genetic etiology of recurrent ICTEV cases has been reflected in this systematic review, giving opportunities for future research.
RESUMEN
BACKGROUND AND AIM: Nasopharyngeal Carcinoma (NPC) is an upper respiratory tract cancer prevalent in Southeast Asia and related to chronic EBV infection. microRNAs (miRNAs) regulate gene expression implicated in NPC's carcinogenesis. However, this circulating RNA molecule's role and clinical utility remain unknown. Therefore, this study examined the circulation of miRNAs and their association with clinical data. METHODS: 160 plasma samples of NPC and 80 non-tumor samples were extracted to evaluate and validate the gene expressions. Quantification expression was performed using relative quantification of qPCR analysis level expression methods. The intrinsic cellular roles involving biological signaling in NPC's oncogenesis using Ingenuity Pathways Analysis (IPA) were also used. RESULTS: The results of the quantification significance profiling of NPC samples revealed decreased miR- 29c-3p (fold change 1.16; p<0.05) and increased 195-5p expression (fold change 1.157; p<0.05). Furthermore, the validation of hsa-miR-29c-3p expression on plasma NPC with known tumor vs. non-tumor and significant changes was also performed using a fold change of 4.45 (medians of 31.45 ± 1.868 and 24.96 ± 1.872, respectively; p<0.0005). miR-29c had a 2.14 fold change correlated with T primary status with a median of 31.99±1.319 and 31.35±2.412, respectively (p<0.05). Stage status with fold change 1.99 also had median levels of 31.98±1.105 and 31.21 ± 2.355, respectively (p-value <0.05). Furthermore, the node's status for the lower expression of miR-29c with fold change 1.17 had median levels of 32.78 ± 2.221 and 31.33 ± 1.689, respectively (p-value of 0.7). Bioinformatics analysis established the roles and functions of miR-29 in NPC progression, cell death and survival, cellular development, cellular function, and cell maintenance by inhibiting COL4A, PI3K, VEGFA, JUN, and CDK6. CONCLUSION: Overall, we conclude that decreased miR-29c expression is associated with poor clinical status and might inhibit NPC's five target genes.
Asunto(s)
Biomarcadores de Tumor , MicroARN Circulante , Regulación Neoplásica de la Expresión Génica , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , MicroARN Circulante/sangre , Progresión de la Enfermedad , Carcinoma Nasofaríngeo/sangre , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/sangre , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Transducción de SeñalRESUMEN
Background: Growing evidence shows that viral co-infection is found repeatedly in patients with Coronavirus Disease-2019 (COVID-19). This is the first report of SARS-CoV-2 co-infection with viral respiratory pathogens in Indonesia. Methods: Over a one month period of April to May 2020, SARS-CoV-2 positive nasopharyngeal swabs in our COVID-19 referral laboratory in Yogyakarta, Indonesia, were tested for viral respiratory pathogens by real-time, reverse transcription polymerase chain reaction (RT-PCR). Proportion of co-infection reported in percentage. Results: Fifty-nine samples were positive for other viral respiratory pathogens among a total of 125 samples. Influenza A virus was detected in 32 samples, Influenza B in 16 samples, Human metapneumovirus in 1 sample, and adenovirus in 10 samples. We did not detect any co-infection with respiratory syncytial virus. Nine (7.2%) patients had co-infection with more than two viruses. Conclusion: Viral co-infection with SARS-CoV-2 is common. These results will provide a helpful reference for diagnosis and clinical treatment of patients with COVID-19.
RESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new virus responsible for the COVID-19 pandemic. The emergence of the new SARS-CoV-2 has been attributed to the possibility of evolutionary dynamics in the furin cleavage site (FCS) region. This study aimed to analyze the sequence of the FCS region in the spike protein of SARS-CoV-2 isolates that circulated in the Special Region of Yogyakarta and Central Java provinces in Indonesia. The RNA solution extracted from nasopharyngeal swab samples of confirmed COVID-19 patients were used and subjected to cDNA synthesis, PCR amplification, sequencing, and analysis of the FCS region. The sequence data from GISAID were also retrieved for further genome analysis. This study included 52 FCS region sequences. Several mutations were identified in the FCS region, i.e., D614G, Q675H, Q677H, S680P, and silent mutation in 235.57 C > T. The most important mutation in the FCS region is D614G. This finding indicated the G614 variant was circulating from May 2020 in those two provinces. Eventually, the G614 variant totally replaced the D614 variant from September 2020. All Indonesian SARS-CoV-2 isolates during this study and those deposited in GISAID showed the formation of five clade clusters from the FCS region, in which the D614 variant is in one specific cluster, and the G614 variant is dispersed into four clusters. The data indicated there is evolutionary advantage of the D614G mutation in the FCS region of the spike protein of SARS-CoV-2 circulating in the Special Region of Yogyakarta and Central Java provinces in Indonesia.
Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , COVID-19/epidemiología , COVID-19/virología , Furina , Humanos , Indonesia/epidemiología , Mutación , Pandemias , SARS-CoV-2/genética , Análisis de Secuencia , Glicoproteína de la Espiga del Coronavirus/genéticaRESUMEN
OBJECTIVE: This study aims to evaluate the correlation between electrolytes and serial miRNAs from our previous study. We want to prove that there is the molecular basis that underlying electrolytes disturbances as the predictive indicator to the outcome in NSCLC patients. RESULTS: There were positive correlation between potassium level with miR-34 (p = 0.008, r = 0.366), miR-148 (p = 0.004, r = 0.394) and miR-155 (p = 0.031, r = 0.300).
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Indonesia , Neoplasias Pulmonares/genética , MicroARNs/genéticaRESUMEN
Objective: External counterpulsation (ECP) provides long-term benefits of improved anginal frequency and exercise tolerance in patients with refractory angina (RA). This is postulated as a result of improved angiogenesis and endothelial function through an increase in shear stress. Angiogenesis is mainly represented by vascular endothelial growth factor-A (VEGF-A) and its receptor, vascular endothelial growth factor receptor-2 (VEGFR-2). The microRNA-92a (miR-92a) is a flow-sensitive miRNA that regulates atherosclerosis and angiogenesis in response to shear stress. Thus, ECP beneficial effect might be achieved through interaction between VEGF-A, VEGFR-2, and miR-92a. This study aims to evaluate the ECP effect on VEGF-A, VEGFR-2, and miR-92a in patients with RA in a sham-controlled manner. Methods: This was a randomized sham-controlled trial, enrolling 50 patients with RA who have coronary artery disease (CAD). Participants were randomized (1:1 ratio) to 35 sessions of either ECP (n = 25) or sham (n = 25), each session lasting for 1 h. Plasma levels of VEGF-A and VEGFR-2 were assayed by the ELISA technique. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to measure miR-92a circulating levels in plasma. Result: External counterpulsation significantly preserved VEGF-A and VEGFR-2 level compared to sham [ΔVEGF-A: 1 (-139 to 160) vs.-136 (-237 to 67) pg/ml, p = 0.026; ΔVEGFR-2: -171(-844 to +1,166) vs. -517(-1,549 to +1,407) pg/ml, p = 0.021, respectively]. Circulating miR-92a increased significantly in ECP [5.1 (4.2-6.4) to 5.9 (4.8-6.4), p < 0.001] and sham [5.2 (4.1-9.4) to 5.6 (4.8-6.3), p = 0.008] post-intervention. The fold changes tended to be higher in ECP group, although was not statistically different from sham [fold changes ECP = 4.6 (0.3-36.5) vs. sham 2.8 (0-15), p = 0.33)]. Conclusion: External counterpulsation improved angiogenesis by preserving VEGF-A and VEGFR-2 levels. Both ECP and sham increased miR-92a significantly, yet the changes were not different between the two groups. (Study registered on www.clinicaltrials.gov, no: NCT03991871, August 8, 2019, and received a grant from the National Health Research and Development of Ministry of Health of Indonesia, No: HK.02.02/I/27/2020).
RESUMEN
OBJECTIVES: Monitoring the spread of the G614 in specific locations is critical as this variant is highly transmissible and can trigger the emergence of other mutations. Therefore, a rapid and accurate method that can reliably detect the D614G mutation will be beneficial. This study aims to analyze the potential use of the two-step Reverse Transcriptase quantitative polymerase chain reaction - high resolution melting analysis (RT-qPCR-HRM) to detect a specific mutation in the SARS-CoV-2 genome. METHODS: Six SARS-CoV-2 RNA samples were synthesized into cDNA and analyzed with the qPCR-HRM method in order to detect the D614G mutation in Spike protein of SARS-CoV-2. The primers are designed to target the specific Spike region containing the D614G mutation. The qPCR-HRM analysis was conducted simultaneously, and the identification of the SARS-CoV-2 variant was confirmed by conventional PCR and Sanger sequencing methods. RESULTS: The results showed that the melting temperature (Tm) of the D614 variant was 79.39 ± 0.03 °C, which was slightly lower than the Tm of the G614 variant (79.62 ± 0.015 °C). The results of the HRM analysis, visualized by the normalized melting curve and the difference curve were able to discriminate the D614 and G614 variant samples. All samples were identified as G614 variants by qPCR-HRM assay, which was subsequently confirmed by Sanger sequencing. CONCLUSIONS: This study demonstrated a sensitive method that can identify the D614G mutation by a simple two-step RT-qPCR-HRM assay procedure analysis, which can be useful for active surveillance of the transmission of a specific mutation.
RESUMEN
CONTEXT: Chemoresistance is a major issue in patients with locally advanced oral squamous cell carcinoma (OSCC). In this study, we evaluated the effectiveness of melatonin in conjunction with neoadjuvant chemotherapy (NC) on hypoxia-inducible factor-1α (HIF-1α) expression and clinical response in locally advanced OSCC patients. AIMS: To study the effects of melatonin on HIF-1α expression and its effect on the clinical response of patients with locally advanced OSCC. SETTINGS AND DESIGN: A randomized controlled trial was conducted, wherein patients were recruited from several hospitals in Jakarta, Indonesia. Patients were randomized into two groups using computerized block randomization. SUBJECTS AND METHODS: Both groups were given NC, with treatment group receiving melatonin. Outcomes measured in this study were HIF-1α expression from tissue samples and clinical response based on the RECIST 1.1 criteria. Twenty-five patients completed the study protocol and were included in the data analysis. STATISTICAL ANALYSIS USED: Shapiro-Wilk test was used to test the data normality. For data with normal distribution, we conducted an independent t-test to compare between the two groups. Data with abnormal distribution were analyzed using Mann-Whitney U-test. The mean difference between the two groups was analyzed using Shapiro-Wilk normality test. RESULTS: Our study showed a significant decrease in HIF-1α expression in the melatonin group compared to the placebo group (P < 0.05, relative risk 3.08). However, the degree of reduction of HIF-1α expression in the melatonin group did not differ significantly (P = 0.301). CONCLUSIONS: Our study showed that melatonin administered at 20 mg/day could reduce the expression of HIF-1α and residual tumor percentage, but did not affect the clinical response in OSCC patients.
RESUMEN
BACKGROUND: Triple-negative breast cancer (TNBC) has a more aggressive phenotype and poorer prognosis than hormone receptor (HR+) and human epidermal growth factor receptor (HER2 -) subtypes. Inhibition of cyclin-dependent kinase (CDK)4 and CDK6 was successful in patients with advanced metastatic HR+/HER2- breast cancer, but those with TNBC exhibited low or no response to this therapeutic approach. This study investigated the dual therapeutic targeting of CDK2 and CDK4 by using 4-acetyl-antroquinonol B (4-AAQB) against TNBC cells. METHODS: We examined the effects of CDK2, CDK4, and CDK6 inhibition through 4-AAQB treatment on TNBC cell lines and established an orthotropic xenograft mouse model to confirm the in vitro results of inhibiting CDK2, CDK4, and CDK6 by 4-AAQB treatment. RESULTS: High expression and alteration of CDK2 and CDK4 but not CDK6 significantly correlated with poor overall survival of patients with breast cancer. CDK2 and CDK4 were positively correlated with damage in DNA replication and repair pathways. Docking results indicated that 4-AAQB was bound to CDK2 and CDK4 with high affinity. Treatment of TNBC cells with 4-AAQB suppressed the expression of CDK2 and CDK4 in vitro. Additionally, 4-AAQB induced cell cycle arrest, DNA damage, and apoptosis in TNBC cells. In vivo study results confirmed that the anticancer activity of 4-AAQB suppressed tumor growth through the inhibition of CDK2 and CDK4. CONCLUSION: The expression level of CDK2 and CDK4 and DNA damage response (DDR) signaling are prominent in TNBC cell cycle regulation. Thus, 4-AAQB is a potential agent for targeting CDK2/4 and DDR in TNBC cells.
Asunto(s)
4-Butirolactona/análogos & derivados , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Ciclohexanonas/farmacología , Daño del ADN , Reparación del ADN/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , 4-Butirolactona/farmacología , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/genética , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos NOD , Ratones SCID , Transducción de Señal , Neoplasias de la Mama Triple Negativas/enzimología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
PURPOSE: Determining the optimal strategy to implement systemic treatment modalities has been challenging in triple-negative breast cancer (TNBC). We aim to investigate the role of microRNA-223 (miR-223) as prognostic factor and predictor of response toward chemotherapy in TNBC. PATIENTS AND METHODS: We retrospectively analyzed the association of pretreatment miR-223 expression with clinicopathologic characteristics and 36-month overall survival (OS) of 53 all stages TNBC patients. Tumor level of miR-223 was measured using real-time quantitative polymerase chain reaction (expressed in fold change). Cutoff value for miR-223 was determined by using receiver operating curve (ROC). Kaplan-Meier curve was used to perform survival analysis. RESULTS: The optimum cutoff value for miR-223 was 23.435 (AUC: 0.706, 95%CI: 0.565-0.848; p:0.01; sensitivity: 78.6%; specificity: 56%) and was used to categorize mir-223 expression into over- and underexpressed group. Overexpression of miR-223 was associated with increased expression of EGFR (69.7% vs 35%, p: 0.022) and lower 36-month OS (33.3% vs 70%; median OS±SE (months): 25.66±1.58 vs 30.23±1.99; log rank p<0.05). Worse survival is observed in miR-223 overexpressed group receiving platinum-based chemotherapy compared to miR-223 underexpressed group (mean OS (95%CI) months: 24.7 (20.3-29.1) vs 34.3 (31.2-37.4); p<0.01), while no significant difference observed in non-platinum containing regimen. No significant association was observed between miR-223 expression with other clinicopathologic characteristics. CONCLUSION: Overexpression of miR-223 is associated with increased expression of EGFR, worse prognosis, and resistance toward platinum-based chemotherapy in Indonesian TNBC patients.
RESUMEN
BACKGROUND: Triple negative breast cancer (TNBC) (represents roughly 25% of all breast cancers in Yogyakarta) still has the worst survival compared to other breast cancer subtypes. Results from recent studies have shown that inhibition of programmed death-ligand 1 receptor (PD-L1) in TNBC patients is associated with better prognosis. Currently, data on PD-L1 expression and its prognostic value in Indonesian TNBC patients are still relatively unknown. This study aimed to investigate the expression of PD-L1 in Indonesian TNBC patients as preliminary proof to support PD-L1 inhibitor as a possible treatment option near in the future. METHODS: We retrospectively included stage I-III TNBC patients diagnosed between 2014 and 2017 in Dr. Sardjito Hospital, Yogyakarta, Indonesia. Clinical variables were collected from medical record. Paraffin blocks of biopsy specimen were retrieved to examine mRNA level of PD-L1. RESULTS: We included 48 subjects with mean age of 51.09 years and mean body mass index (BMI) of 24.58. The 3-year overall survival (OS) was 58.3%. Overexpression of PD-L1 mRNA in TNBC patients is associated with worse prognosis (P < 0.01). There were no statistically significant associations between PD-L1 mRNA expression and any of the clinicopathologic variables examined. CONCLUSIONS: In summary, PD-L1 mRNA overexpression is associated with worse survival in Indonesian TNBC patients, independent of other established risk factors. PD-L1 mRNA is expressed in all of our samples, presenting as a feasible alternative or complementary method in deciding which patient might benefit from receiving PD-L1 inhibitor.
RESUMEN
Purpose: Ovarian cancer is the most lethal of gynecological malignancies. Recently, the development of microRNA (miRNA) -based therapeutics that could impact broad cellular programs, leading to inhibition of cancer cell viability, is gaining attention in the therapeutic landscape. The therapy is based on the presence of aberrant expressions of miRNA in cancer cells. Decreasing of tumor suppressor miRNA expression causes upregulation of oncoprotein, which worsens the prognosis of the ovarian cancer. Methods: miR-155-5p mimics were carried by chitosan nanoparticles using new nanotechnology methods. Cellular uptake of miRNA was assessed by fluorescence microscope while MTT and qPCR assay were used to determine miRNA profile and the effect of CS-NP/miRNA on SKOV3 cells. Results: Results of profiling validated using quantitative realtime-polymerase chain reaction (PCR) found one of the most altered tumor suppressor miRNAs, miR-155-5p was downregulated 892.15-fold. According to bioinformatic analysis we identified the miRNA could recognize and regulate HIF1α expression. Transfection of mimics for miR-155-5p showed significantly increased miR-155-5p endogen SKOV3 expression level compared to the control group. We found differences after transfection mimics for miR-155-5p 31.5 and 63 nanoMolar. Increasing of miR-155-5p endogen lead to diminished SKOV3 viability (by 30%; <0.05 at concentration 80 nanoMolar). These mimics may cause an increase in upregulated miR-155-5p endogen that can reduce HIF1α expression. Here we found 2-fold and 2.8-fold reduction of HIF1α expression level after transfection compared to the control group. Conclusion: According to these findings, the mimics miR-155-5p can inhibit ovarian cancer cell proliferation by regulating HIF1α expression.
RESUMEN
OBJECTIVE: Nasopharyngeal carcinoma (NPC) is the most common cancer arising from epithelial cells of the nasopharynx in Indonesia. This study aims to determine the differential level of gene expression in NPC patients when compared with normal individuals. Transcriptome profiling analysis was performed using RNA-Seq technology to determine the differential gene expression relate to proliferation aberration that occurs in NPC patients compared with normal individuals. So we get the transcriptomic profile of Indonesia NPC patients. METHODS: In this study, we used 9 samples, 7 NPC samples and 2 normal samples as control. Fresh tissue of tumor samples was collected from biopsy, and normal samples were collected brushing technique. The total RNA was isolated from fresh tissue samples and brushing samples using the Rneasy® RNA Extraction Mini Kit. The cDNA library was generated using TruSeq® RNA Library Preparation Kit V2, and its concentration was determined using qPCR. The library was sequenced using the Next-Generation Sequencing (NGS) Illumina Next Seq 550 platform. The raw sequence data quality was analyzed using FastQC and interpreted using HISAT2, HTSeq, edgeR, and PANTHER. RESULTS: From the analysis, 25493 gene transcripts were expressed, with 1956 genes were significantly upregulated, 90 genes were significantly downregulated in NPC samples, and 23897 genes didn't change the expression level significantly (p <0.05), 10 of which genes were associated with cell proliferation. These genes are involved in the regulation of cancer cell proliferation through several signaling pathways, which are the apoptosis signaling pathway, IGF signaling pathway, Notch signaling pathway, and P13K signaling pathway. CONCLUSION: There were significant differences in gene expression levels between NPC patients and normal individuals. Each gene that has changed the expression level plays a role in regulating various pathways that lead to cell proliferation aberration in NPC cases.
Asunto(s)
Biomarcadores de Tumor/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/patología , Transcriptoma , Humanos , Indonesia/epidemiología , Carcinoma Nasofaríngeo/epidemiología , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/epidemiología , Neoplasias Nasofaríngeas/genética , PronósticoRESUMEN
OBJECTIVE: This study aims to obtain the transcriptomes profile associated with avoiding immune destruction from nasopharyngeal cancer patients in Indonesia using next-generation sequencing. METHODS: The samples are divided into two types of samples; 1) biopsy of nasopharyngeal cancer tissue samples, 2) brushing tissue of people without nasopharyngeal cancer as control samples. The sequencing results were mapped (HISAT2) and quantified (HTSeq) for differential expression analysis using edgeR software. Transcripts data analyzed with Pantherdb and DAVID software to find genes related to the immune system and pathways related to immune destruction by cancer. RESULTS: The differential expression results show that 2,046 genes that have a significant differential expression. The 90 genes expression has down-regulated and 1,956 genes expression up-regulated, there are 20 genes related to the immune system. The 20 genes related to the immune system by analyzing lionproject.net that directly related to hallmark avoiding immune destruction that genes are CXCL9/10/11. The gene expression of CXCL9/10/11 regulates PD-L1 expressions via the Jak/STAT signaling pathway. The interaction between the extracellular domain PD-1 and PD-L1 in cancer cells have avoiding immune destruction. CONCLUSION: The results of this study suggest that the gene expression of CXCL9/10/11 have up-regulated is related to avoiding immune destruction that can use as an early detection biomarker of nasopharyngeal cancer in Indonesian patients.
Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Inmunidad Innata/genética , Carcinoma Nasofaríngeo/inmunología , Neoplasias Nasofaríngeas/inmunología , Transcriptoma , Humanos , Indonesia/epidemiología , Carcinoma Nasofaríngeo/epidemiología , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/epidemiología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , PronósticoRESUMEN
OBJECTIVE: Transcriptomic Profile Analysis Related to Inflammation in Nasopharyngeal Carcinoma Cases. METHODS: This study used 2 control samples taken using the brushing technique and 7 cancer samples with tissue biopsy. Isolate total RNA using Rneasy® RNA Extraction Mini Kit. Measurement of total RNA concentration and purity using a fluorometer and nanodrop Qubit. Synthesis of cDNA library uses TruSeq® RNA Library Preparation Kit V2 and concentration is measured using qPCR. Sequencing samples using NGS Illumina NextSeq 550 platform engine. Quality control results of sequencing using FASTQC, and raw data processing using HISAT2. Differential analysis of gene expression (DEGs) using edgeR and pathway analysis using DAVID and PANTHER. RESULTS: From the 25,493 genes that experienced a significant change in expression level (P <0.05) from DEG analysis there were 13 genes that play a role in the inflammatory process. Based on DAVID pathway analysis software, there are 8 genes detected based on the KEGG pathway database found in 2 pathways, namely Inflammatory Mediator Regulation of TRP Channels pathway with genes that play HTR2A, NGF, TRPA1, PRKCG, and ADCY8. CXCL9, CXCL10, and CXCL11 genes are found in the Toll-Like Receptor Signaling pathway. Based on PANTHER pathway analysis software, 6 genes were found, namely CXCL10, MYLK2, COL20A1, MYH2, ACTC1, and ALOX15 in the Inflammation Mediated by Chemokine and Cytokine Signaling pathways. Almost all genes found from DEGs are upregulated, except the ALOX15 gene that is downregulated. CONCLUSION: There are 13 genes that play a role in the inflammatory process in Nasopharyngeal Carcinomafrom a sample of the Indonesian population. Genes CXCL9, CXCL10, CXCL11, MYLK2, COL20A1, MYH2, ACTC1, HTR2A, NGF, TRPA1, PRKCG, and ADCY8 have been upregulated and ALOX15 has been downregulated. These genes play a role in the Inflammation Mediated by Chemokine and Cytokine Signaling pathways, Inflammatory Mediator Regulation of TRP Channels, and Toll-Like Receptor Signaling.