Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
RSC Adv ; 14(40): 29693-29736, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39297049

RESUMEN

The increasing level of atmospheric CO2 requires the urgent development of effective capture technologies. This comprehensive review thoroughly examines various methods for the synthesis of carbon materials, modification techniques for converting biomass feedstock into carbon materials and pivotal factors impacting their properties. The novel aspect of this review is its in-depth comparison of how these modifications specifically affect the pore structure and surface area together with the exploration of the mechanism underlying the enhancement of CO2 adsorption performance. Additionally, this review addresses research gaps and provides recommendations for future studies concerning the advantages and drawbacks of CO2 adsorbents and their prospects for commercialization and economic feasibility. This article revealed that among the various strategies, template carbonization offers a viable option for providing control of the material pore diameter and structure without additional modification treatments. Optimizing the pore structure of activated carbons, particularly those activated with agents such as KOH and ZnCl2, together with synthesizing hybrid activated carbons using multiple activating agents, is crucial for enhancing their CO2 capture performance. Cost-benefit analysis suggests that biomass-derived activated carbons can significantly meet the escalating demand for CO2 capture materials, offering economic advantages and supporting sustainable waste management.

2.
Sci Rep ; 14(1): 18646, 2024 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134562

RESUMEN

Maternal health is a global public health concern. The paucity of antenatal care (ANC) during pregnancy is directly associated with maternal mortality. This study assessed the individual and community-level determinants of quality  ANC in six South-Asian countries. Data were obtained from a Demographic health survey of six South-Asian countries. This study included a sample of 180,567 (weighted) women aged 15-49 who had given birth in the preceding three years prior to the survey. The quality of ANC was determined by assessing whether a woman had received blood pressure monitoring, urine and blood sample screening, and iron supplements at any ANC visits. Frequency, percentage distribution, and inferential analysis (multilevel mixed-effects model) were conducted. The proportion of quality antenatal care utilization in South Asia was 66.9%. The multilevel analysis showed that women aged 35-49 years (AOR = 1.16; 95% CI = 1.09-1.24), higher education (AOR = 2.84; 95% CI = 2.69-2.99), middle wealth status (AOR = 1.55; 95% CI = 1.49-1.62), richest wealth status (AOR = 3.21; 95% CI = 3.04-3.39), unwanted pregnancy (AOR = 0.92; 95% CI = 0.89-0.95) and 2-4 birth order (AOR = 0.86; 95% CI = 0.83-0.89) were among the individual-level factors that were significantly associated with quality ANC utilization. In addition, rural residence (AOR = 0.77; 95% CI = 0.74-0.8), and big problem - distance to health facility (AOR = 0.63; 95% CI: 0.53-0.76) were the among community level factors there were also significantly associated with use of quality ANC. Meanwhile, women who lived in India (AOR: 22.57; 95% CI: 20.32-25.08) and Maldives (AOR: 33.33; 95% CI: 31.06-35.76) had higher odds of quality ANC than those lived in Afghanistan. Educational status, wealth status, pregnancy wantedness, sex of household head, birth order, place of residence, and distance to health facility were associated with quality ANC. Improving educational status, improving wealth status, reducing the distance to health facilities, and providing rural area-friendly interventions are important to increase the quality of ANC in South Asia.


Asunto(s)
Atención Prenatal , Calidad de la Atención de Salud , Humanos , Femenino , Adulto , Atención Prenatal/estadística & datos numéricos , Embarazo , Persona de Mediana Edad , Adolescente , Adulto Joven , Asia , Factores Socioeconómicos
3.
RSC Adv ; 14(35): 25409-25424, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39139232

RESUMEN

The present perspective emphasizes the green synthesis of CeO2-NPs using Oroxylum indicum fruit extract. The synthesized NPs were characterized utilizing analytical techniques, including FT-IR, UV-vis, XRD, SEM-EDX, and VSM. Of them, XRD analysis ratifies the cubic fluorite crystal structure along with a particle size of 23.58 nm. EDX results support the presence of cerium and oxygen in a proper ratio. The surface morphology of NPs, however, was scrutinized using SEM. The lower IC50 value (20.8 µg mL-1) of NPs compared to the reference substance, ascorbic acid (33.2 µg mL-1), demonstrates CeO2-NPs to be a compatible antioxidant. Moreover, the drug-releasing capability of CeO2-NPs was a buffer pH-dependent parameter. The acidic pH solution was 20.5%, while the basic pH solution was 16.9%. The drug-releasing capability was analyzed using the Higuchi model and Korsmeyer-Peppas kinetics. The values of the determination coefficient (R 2) were found to be 0.9944 and 0.9834, respectively. The photocatalytic activity of CeO2-NPs was evaluated, considering methylene blue as a model dye. The degradation percentage was attained up to 56.77% after it had been exposed for 150 min. Apart from this, the synthesized NPs were screened against two fungus species, Bipolaris sorokiniana and Fusarium. The percentage of growth was measured at 56% and 49%, respectively.

4.
mSphere ; : e0031024, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189778

RESUMEN

Glycogen plays a vital role as an energy reserve in various bacterial and fungal species. Clostridioides difficile possesses a glycogen metabolism operon that contains genes for both glycogen synthesis and utilization. In our investigation, we focused on understanding the significance of glycogen metabolism in the physiology and pathogenesis of C. difficile. To explore this, we engineered a C. difficile JIR8094 strain lacking glycogen synthesis capability by introducing a group II intron into the glgC gene, the operon's first component. Quantification of intracellular glycogen levels validated the impact of this modification. Interestingly, the mutant strain exhibited a 1.5-fold increase in toxin production compared with the parental strain, without significant changes in the sporulation rate. Our analysis also revealed that wild-type C. difficile spores contained glycogen, whereas spores from the mutant strain lacking stored glycogen showed increased sensitivity to physical and chemical treatments and had a shorter storage life. By suppressing glgP expression, the gene coding for glycogen-phosphorylase, via CRISPRi, we demonstrated that glycogen accumulation but not the utilization is needed for spore resilience in C. difficile. Transmission electron microscopy analysis revealed a significantly lower core/cortex ratio in glgC mutant strain spores. In hamster challenge experiments, both the parental and glgC mutant strains colonized hosts similarly; however, the mutant strain failed to induce infection relapse after antibiotic treatment cessation. These findings highlight the importance of glycogen metabolism in C. difficile spore resilience and suggest its role in disease relapse.IMPORTANCEThis study on the role of glycogen metabolism in Clostridioides difficile highlights its critical involvement in the pathogen's energy management, its pathogenicity, and its resilience. Our results also revealed that glycogen presence in spores is pivotal for their structural integrity and resistance to adverse conditions, which is essential for their longevity and infectivity. Importantly, the inability of the mutant strain to cause infection relapse in hamsters post-antibiotic treatment pinpoints a potential target for therapeutic interventions, highlighting the importance of glycogen in disease dynamics. This research thus significantly advances our understanding of C. difficile physiology and pathogenesis, offering new avenues for combating its persistence and recurrence.

5.
Infect Dis Rep ; 16(4): 638-649, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39195000

RESUMEN

Leptospirosis is considered to be the most widespread, yet neglected, re-emerging zoonotic disease caused by infection with a pathogenic species of the genus Leptospira. Although this disease is prevalent in Bangladesh, the recent epidemiological status has not yet been well documented. In this study, we aimed to determine the prevalence of leptospirosis among febrile patients using different diagnostic methods and to characterize the epidemiological features and species of Leptospira in Mymensingh, north-central Bangladesh. Among the blood samples of 186 patients with suspected leptospirosis who met the inclusion criteria, including having a fever for more than 5 days (November 2021-June 2022), 88 samples (47%) were Leptospira-positive according to IgM LAT, IgM ELISA, or nested PCR (positivity rates: 38%, 37%, and 42%, respectively). Nested PCR showed a significantly higher positivity rate (54%) in patients with a short fever (5-10 day) than the other methods did, with lower rates among those with a longer fever. Leptospirosis cases were more common in males (68%), those 16-45 years of age (70%), residents of rural areas (81%), and farmers (41%). In addition to a fever, myalgia and jaundice were found in more than 70% of the patients, while variable symptoms were observed. The 16S rRNA sequencing analysis revealed that the Leptospira species in all the 22 samples tested were L. wolffii, belonging to the pathogenic subclade P2. This study showed the recent epidemiological features of leptospirosis in Bangladesh, indicating the presumptive predominance of L. wolffii since 2019.

6.
RSC Adv ; 14(37): 26995-27041, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39193282

RESUMEN

The MAX phase represents a diverse class of nanolaminate materials with intriguing properties that have received incredible global research attention because they bridge the divide separating metals and ceramics. Despite the numerous potential applications of MAX phases, their complex structure leads to a scarcity of readily accessible pure MAX phases. As a result, in-depth research on synthesis methods, characteristics, and structure is frequently needed for appropriate application. This review provides a comprehensive understanding of the recent advancements and growth in MAX phases, focusing on their complex crystal structures, unique mechanical, thermal, electrical, crack healing, corrosion-resistant properties, as well as their synthesis methods and applications. The structure of MAX phases including single metal MAX, i-MAX and o-MAX was discussed. Moreover, recent advancements in understanding MAX phase behaviour under extreme conditions and their potential novel applications across various fields, including high-temperature coatings, energy storage, and electrical and thermal conductors, biomedical, nanocomposites, etc. were discussed. Moreover, the synthesis techniques, ranging from bottom-up to top-down methods are scrutinized for their efficacy in tailoring MAX phase properties. Furthermore, the review explores the challenges and opportunities associated with optimizing MAX phase materials for specific applications, such as enhancing their oxidation resistance, tuning their mechanical properties, and exploring their functionality in emerging technologies. Overall, this review aims to provide researchers and engineers with a comprehensive understanding of MAX phase materials and inspire further exploration into their versatile applications in materials science and engineering.

7.
Microbiol Resour Announc ; 13(8): e0021824, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39046228

RESUMEN

In Bangladesh, free-range duck farms provide opportunities for the generation of novel influenza A viruses as evidenced by the emergence of an unusual A(H1N7) virus in 2023. Continued surveillance of such environments for the potential emergence of influenza A viruses with novel properties remains a priority.

8.
J Struct Biol X ; 10: 100106, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39040530

RESUMEN

K-Homology domain (KH domain) proteins bind single-stranded nucleic acids, influence protein-protein interactions of proteins that harbor them, and are found in all kingdoms of life. In concert with other functional protein domains KH domains contribute to a variety of critical biological activities, often within higher order machineries including membrane-localized protein complexes. Eukaryotic KH domain proteins are linked to developmental processes, morphogenesis, and growth regulation, and their aberrant expression is often associated with cancer. Prokaryotic KH domain proteins are involved in integral cellular activities including cell division and protein translocation. Eukaryotic and prokaryotic KH domains share structural features, but are differentiated based on their structural organizations. In this review, we explore the structure/function relationships of known examples of KH domain proteins, and highlight cases in which they function within or at membrane surfaces. We also summarize examples of KH domain proteins that influence bacterial virulence and pathogenesis. We conclude the article by discussing prospective research avenues that could be pursued to better investigate this largely understudied protein category.

9.
Gels ; 10(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38920928

RESUMEN

At the forefront of advanced material technology, radiation-induced hydrogels present a promising avenue for innovation across various sectors, utilizing gamma radiation, electron beam radiation, and UV radiation. Through the unique synthesis process involving radiation exposure, these hydrogels exhibit exceptional properties that make them highly versatile and valuable for a multitude of applications. This paper focuses on the intricacies of the synthesis methods employed in creating these radiation-induced hydrogels, shedding light on their structural characteristics and functional benefits. In particular, the paper analyzes the diverse utility of these hydrogels in biomedicine and agriculture, showcasing their potential for applications such as targeted drug delivery, injury recovery, and even environmental engineering solutions. By analyzing current research trends and highlighting potential future directions, this review aims to underscore the transformative impact that radiation-induced hydrogels could have on various industries and the advancement of biomedical and agricultural practices.

11.
J Agric Food Chem ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836763

RESUMEN

Mung bean contains up to 32.6% protein and is one of the great sources of plant-based protein. Because many allergens also function as defense-related proteins, it is important to determine their abundance levels in the high-yielding, disease-resistant cultivars. In this study, for the first time, we compared the seed proteome of high-yielding mung bean cultivars developed by a conventional breeding approach. Using a label-free quantitative proteomic platform, we successfully identified and quantified a total of 1373 proteins. Comparative analysis between the high-yielding disease-resistant cultivar (MC5) and the other three cultivars showed that a total of 69 common proteins were significantly altered in their abundances across all cultivars. Bioinformatic analysis of these altered proteins demonstrated that PDF1 (a defensin-like protein) exhibited high sequence similarity and epitope matching with the established peanut allergens, indicating a potential mung bean allergen that showed a cultivar-specific response. Conversely, known mung bean allergen proteins such as PR-2/PR-10 (Vig r 1), Vig r 2, Vig r 4, LTP1, ß-conglycinin, and glycinin G4 showed no alternation in the MC5 compared to other cultivars. Taken together, our findings suggest that the known allergen profiles may not be impacted by the conventional plant breeding method to develop improved mung bean cultivars.

12.
Int J Gen Med ; 17: 2507-2512, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38826511

RESUMEN

Background: Genetic factors contribute significantly to the risk of ischaemic heart disease (IHD), which is the leading cause of mortality in Bangladesh. The BANGABANDHU (Bangladeshi Atherosclerosis Biobank AND Hub) study will allow a hypothesis-free genome-wide association study (GWAS) to identify genetic risk factors associated with ischaemic heart disease patients undergoing coronary artery bypass graft (CABG) surgery in Bangladesh. Methods:  This is a multi-centre population-based case-control study aimed to evaluate 1500 (Fifteen Hundred) adult (≥18 years of age) people divided into 2 study groups: Case/Proband (750 IHD patients undergoing CABG surgery) and Control (750 healthy people). Spouses or family members are preferred as healthy control subjects due to their shared geographic location and similar environmental exposure. Results: This will be the first largest DNA repository of CABG patients in Bangladesh, and identifying novel gene loci among CABG patients might help to discover novel therapeutic targets for Bangladeshi IHD patients. Further, identifying and comparing novel gene loci among CABG patients with other ancestry might help devise national guidelines for treating coronary artery disease. Conclusion: Promising current study results will encourage Bangladeshi researchers and pharmaceutical companies to conduct further studies into the genetic basis of Bangladeshi complex coronary artery disease, which might identify novel genes for therapeutic targets for Bangladeshi patients and strengthen the healthcare standards in Bangladesh.

13.
Med Oncol ; 41(7): 183, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902544

RESUMEN

Autophagy is a cytoplasmic defense mechanism that cells use to break and reprocess their intracellular components. This utilization of autophagy is regarded as a savior in nutrient-deficient and other stressful conditions. Hence, autophagy keeps contact with and responds to miscellaneous cellular tensions and diverse pathways of signal transductions, such as growth signaling and cellular death. Importantly, autophagy is regarded as an effective tumor suppressor because regular autophagic breakdown is essential for cellular maintenance and minimizing cellular damage. However, paradoxically, autophagy has also been observed to promote the events of malignancies. This review discussed the dual role of autophagy in cancer, emphasizing its influence on tumor survival and progression. Possessing such a dual contribution to the malignant establishment, the prevention of autophagy can potentially advocate for the advancement of malignant transformation. In contrast, for the context of the instituted tumor, the agents of preventing autophagy potently inhibit the advancement of the tumor. Key regulators, including calpain 1, mTORC1, and AMPK, modulate autophagy in response to nutritional conditions and stress. Oncogenic mutations like RAS and B-RAF underscore autophagy's pivotal role in cancer development. The review also delves into autophagy's context-dependent roles in tumorigenesis, metastasis, and the tumor microenvironment (TME). It also discusses the therapeutic effectiveness of autophagy for several cancers. The recent implication of autophagy in the control of both innate and antibody-mediated immune systems made it a center of attention to evaluating its role concerning tumor antigens and treatments of cancer.


Asunto(s)
Autofagia , Neoplasias , Humanos , Autofagia/fisiología , Neoplasias/patología , Microambiente Tumoral , Metástasis de la Neoplasia , Animales , Transducción de Señal
15.
Phys Med Biol ; 69(11)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38593830

RESUMEN

Objective.Automatic medical image segmentation is crucial for accurately isolating target tissue areas in the image from background tissues, facilitating precise diagnoses and procedures. While the proliferation of publicly available clinical datasets led to the development of deep learning-based medical image segmentation methods, a generalized, accurate, robust, and reliable approach across diverse imaging modalities remains elusive.Approach.This paper proposes a novel high-resolution parallel generative adversarial network (pGAN)-based generalized deep learning method for automatic segmentation of medical images from diverse imaging modalities. The proposed method showcases better performance and generalizability by incorporating novel components such as partial hybrid transfer learning, discrete wavelet transform (DWT)-based multilayer and multiresolution feature fusion in the encoder, and a dual mode attention gate in the decoder of the multi-resolution U-Net-based GAN. With multi-objective adversarial training loss functions including a unique reciprocal loss for enforcing cooperative learning inpGANs, it further enhances the robustness and accuracy of the segmentation map.Main results.Experimental evaluations conducted on nine diverse publicly available medical image segmentation datasets, including PhysioNet ICH, BUSI, CVC-ClinicDB, MoNuSeg, GLAS, ISIC-2018, DRIVE, Montgomery, and PROMISE12, demonstrate the proposed method's superior performance. The proposed method achieves mean F1 scores of 79.53%, 88.68%, 82.50%, 93.25%, 90.40%, 94.19%, 81.65%, 98.48%, and 90.79%, respectively, on the above datasets, surpass state-of-the-art segmentation methods. Furthermore, our proposed method demonstrates robust multi-domain segmentation capabilities, exhibiting consistent and reliable performance. The assessment of the model's proficiency in accurately identifying small details indicates that the high-resolution generalized medical image segmentation network (Hi-gMISnet) is more precise in segmenting even when the target area is very small.Significance.The proposed method provides robust and reliable segmentation performance on medical images, and thus it has the potential to be used in a clinical setting for the diagnosis of patients.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Análisis de Ondículas , Procesamiento de Imagen Asistido por Computador/métodos , Humanos , Aprendizaje Profundo
16.
Animals (Basel) ; 14(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38338113

RESUMEN

In animal farming, timely estrus detection and prediction of the best moment for insemination is crucial. Traditional sow estrus detection depends on the expertise of a farm attendant which can be inconsistent, time-consuming, and labor-intensive. Attempts and trials in developing and implementing technological tools to detect estrus have been explored by researchers. The objective of this review is to assess the automatic methods of estrus recognition in operation for sows and point out their strong and weak points to assist in developing new and improved detection systems. Real-time methods using body and vulvar temperature, posture recognition, and activity measurements show higher precision. Incorporating artificial intelligence with multiple estrus-related parameters is expected to enhance accuracy. Further development of new systems relies mostly upon the improved algorithm and accurate data provided. Future systems should be designed to minimize the misclassification rate, so better detection is achieved.

17.
Phys Med Biol ; 69(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38056017

RESUMEN

Objective.Breast cancer is the major cause of cancer death among women worldwide. Deep learning-based computer-aided diagnosis (CAD) systems for classifying lesions in breast ultrasound images can help materialise the early detection of breast cancer and enhance survival chances.Approach.This paper presents a completely automated BUS diagnosis system with modular convolutional neural networks tuned with novel loss functions. The proposed network comprises a dynamic channel input enhancement network, an attention-guided InceptionV3-based feature extraction network, a classification network, and a parallel feature transformation network to map deep features into quantitative ultrasound (QUS) feature space. These networks function together to improve classification accuracy by increasing the separation of benign and malignant class-specific features and enriching them simultaneously. Unlike the categorical crossentropy (CCE) loss-based traditional approaches, our method uses two additional novel losses: class activation mapping (CAM)-based and QUS feature-based losses, to capacitate the overall network learn the extraction of clinically valued lesion shape and texture-related properties focusing primarily the lesion area for explainable AI (XAI).Main results.Experiments on four public, one private, and a combined breast ultrasound dataset are used to validate our strategy. The suggested technique obtains an accuracy of 97.28%, sensitivity of 93.87%, F1-score of 95.42% on dataset 1 (BUSI), and an accuracy of 91.50%, sensitivity of 89.38%, and F1-score of 89.31% on the combined dataset, consisting of 1494 images collected from hospitals in five demographic locations using four ultrasound systems of different manufacturers. These results outperform techniques reported in the literature by a considerable margin.Significance.The proposed CAD system provides diagnosis from the auto-focused lesion area of B-mode BUS images, avoiding the explicit requirement of any segmentation or region of interest extraction, and thus can be a handy tool for making accurate and reliable diagnoses even in unspecialized healthcare centers.


Asunto(s)
Neoplasias de la Mama , Mama , Femenino , Humanos , Mama/diagnóstico por imagen , Ultrasonografía/métodos , Redes Neurales de la Computación , Neoplasias de la Mama/diagnóstico por imagen , Ultrasonografía Mamaria
18.
Heliyon ; 9(12): e22866, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38125486

RESUMEN

Conventional Copper Indium Gallium Di Selenide (CIGS)-based solar cells are more efficient than second-generation technology based on hydrogenated amorphous silicon (a-Si: H) or cadmium telluride (CdTe). So, herein the photovoltaic (PV) performance of CIGS-based solar cells has been investigated numerically using SCAPS-1D solar simulator with different buffer layer and less expensive tin sulfide (Sn2S3) back-surface field (BSF). At first, three buffer layer such as cadmium sulfide (CdS), zinc selenide (ZnSe) and indium-doped zinc sulfide ZnS:In have been simulated with CIGS absorber without BSF due to optimized and non-toxic buffer. Then the optimized structure of Al/FTO/ZnS:In/CIGS/Ni is modified to become Al/FTO/ZnS:In/CIGS/Sn2S3/Ni by adding a Sn2S3 BSF to enhanced efficiency. The detailed analysis have been investigated is the influence of physical properties of each absorber and buffer on photovoltaic parameters including layer thickness, carrier doping concentration, bulk defect density, interface defect density. This study emphasizes investigating the reasons for the actual devices' poor performance and illustrates how each device's might vary open-circuit voltage (VOC), short-circuit current density (JSC), fill factor (FF), power conversion efficiency (PCE), and quantum efficiency (QE). The optimized structure offers outstanding power conversion efficiency (PCE) of 21.83 % with only 0.80 µm thick CIGS absorber. The proposed CIGS-based solar cell performs better than the previously reported conventional designs while also reducing CIGS thickness and cost.

19.
F1000Res ; 12: 29, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38021404

RESUMEN

Background and aims: Natural compounds extracted from medicinal plants have recently gained attention in therapeutics as they are considered to have lower Toxicity and higher tolerability relative to chemically synthesized compounds. Bakuchiol from Psoralea corylifolia L. is one such compound; it is a type of meroterpene derived from the leaves and seeds of Psoralea corylifolia plants. Natural sources of bakuchiol have been used in traditional Chinese and Indian medicine for centuries due to its preventive benefits against tumors and inflammation. It plays a strong potential role as an antioxidant with impressive abilities to remove Reactive Oxygen Species (ROS). This review has focused on bakuchiol's extraction, therapeutic applications, and pharmacological benefits. Methods: A search strategy has been followed to retrieve the relevant newly published literature on the pharmacological benefits of bakuchiol. After an extensive study of the retrieved articles and maintaining the inclusion and exclusion criteria, 110 articles were finally selected for this review. Results: Strong support of primary research on the protective effects via antitumorigenic, anti-inflammatory, antioxidative, antimicrobial, and antiviral activities are delineated. Conclusions: From ancient to modern life, medicinal plants have always been drawing the attention of human beings to alleviate ailments for a healthy and balanced lifestyle. This review is a comprehensive approach to highlighting bona fide essential pharmacological benefits and mechanisms underlying their therapeutic applications.


Asunto(s)
Fabaceae , Plantas Medicinales , Psoralea , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Psoralea/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico
20.
Metabol Open ; 20: 100257, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37781687

RESUMEN

Introduction: This exploratory review article describes about the genetic factors behind Alzheimer's disease (AD), their association with foods, and their relationships with cognitive impairment. It explores the dietary patterns and economic challenges in AD prevention. Methods: Scopus, PubMed and Google Scholar were searched for articles that examined the relationships between Diets, Alzheimer's Disease (AD), and Socioeconomic conditions in preventative Alzheimer's disease studies. Graphs and Network analysis data were taken from Scopus under the MeSH search method, including words, Alzheimer's, APoE4, Tau protein, APP, Amyloid precursor protein, Beta-Amyloid, Aß, Mediterranean Diet, MD, DASH diet, MIND diet, SES, Socioeconomic, Developed country, Underdeveloped country, Preventions. The network analysis was done through VOS viewer. Results: Mediterranean diet (MD) accurately lowers AD (Alzheimer's Disease) risk to 53% and 35% for people who follow it moderately. MIND scores had a statistically significant reduction in AD rate compared to those in the lowest tertial (53% and 35% reduction, respectively). Subjects with the highest adherence to the MD and DASH had a 54% and 39% lower risk of developing AD, respectively, compared to those in the lowest tertial. Omega-6, PUFA, found in nuts and fish, can play most roles in the clearance of Aß. Vitamin D inhibits induced fibrillar Aß apoptosis. However, the high cost of these diet components rise doubt about the effectiveness of AD prevention through healthy diets. Conclusion: The finding of this study revealed an association between diet and the effects of the chemical components of foods on AD biomarkers. More research is required to see if nutrition is a risk or a protective factor for Alzheimer's disease to encourage research to be translated into therapeutic practice and to clarify nutritional advice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...