RESUMEN
In tissue culture, efficient nutrient availability and effective control of callus contamination are crucial for successful plantlet regeneration. This study was aimed to enhance callogenesis, callus regeneration, control callus contamination, and substitute iron (Fe) source with FeO-NPs in Murashige and Skoog (MS) media. Nanogreen iron oxide (FeO-NPs) were synthesized and well characterized with sizes ranging from 2 to 7.5 nm. FeO-NPs as a supplement in MS media at 15 ppm, significantly controlled callus contamination by (80%). Results indicated that FeCl3-based FeO-NPs induced fast callus induction (72%) and regeneration (43%), in contrast FeSO4-based FeO-NPs resulted in increased callus weight (516%), diameter (300%), number of shoots (200%), and roots (114%). Modified media with FeO-NPs as the Fe source induced fast callogenesis and regeneration compared to normal MS media. FeO-NPs, when applied foliar spray, increased Plant fresh biomass by 133% and spike weight by 350%. Plant height increased by 54% and 33%, the number of spikes by 50% and 265%, and Chlorophyll content by 51% and 34% in IRRI-6 and Kissan Basmati, respectively. Additionally, APX (Ascorbate peroxidase), SOD (Superoxide dismutase), POD (peroxidase), and CAT (catalase) increased in IRRI-6 by 27%, 29%, 283%, 62%, while in Kissan Basmati, APX increased by 70%, SOD decreased by 28%, and POD and CAT increased by 89% and 98%, respectively. Finally, FeO-NPs effectively substituted Fe source in MS media, shorten the plant life cycle, and increase chlorophyll content as well as APX, SOD, POD, and CAT activities. This protocol is applicable for tissue culture in other cereal crops as well.
Asunto(s)
Antioxidantes , Oryza , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Oryza/fisiología , Antioxidantes/metabolismo , Compuestos Férricos , Nanopartículas Magnéticas de Óxido de Hierro , Tecnología Química VerdeRESUMEN
Greenhouses are space-efficient structures used in the production of produce. However, occupational health issues like exposure to chemicals, and physiological and postural stresses are experienced by operators while performing farm activities due to the enclosed environment of the greenhouse. This study assesses chemical exposure and physiological and postural parameters of operators during spraying with two different types of sprayers (Battery-powered knapsack sprayer [Battery sprayer] and AC-powered stationary sprayer [Stationary sprayer]) with two different application techniques (continuous and alternate row). The mean Potential Dermal Exposure (PDE) for a continuous row of spraying was 54 and 70 mL h-1 with battery and stationary sprayers, respectively. However, PDE in alternate row spraying was approximately 16 and 25% less in battery and stationary sprayers than in a continuous row. The upper and left portions of the body had higher exposure compared to the lower and right half portions in all treatments. The ergonomic parameters (physiological and postural assessment) in continuous and alternate row spraying techniques did not differ but varied with the type of sprayer used. Mean values of energy expenditure rate, body part discomfort score, overall discomfort score, and risk index were 210 ± 35 W, 27 ± 2.0, 6.1 ± 0.4, and 1.0, respectively, in the battery sprayer compared to 290 ± 80 W, 35 ± 4.1, 8.3 ± 1.0, and 2.0 in the stationary sprayer. This study concluded that the use of a battery sprayer with an alternate row spraying technique resulted in lower dermal exposure (45 mL h-1) and was ergonomically less demanding.
RESUMEN
Salinity is the major abiotic stress among others that determines crop productivity. The primary goal is to examine the impact of Zinc Oxide Nanoparticles (ZnO NPs) on the growth, metabolism, and defense systems of pea plants in simulated stress conditions. The ZnO NPs were synthesized via a chemical process and characterized by UV, XRD, and SEM. The ZnO NPs application (50 and 100) ppm and salt (50 mM and 100 mM) concentrations were carried out individually and in combination. At 50 ppm ZnO NPs the results revealed both positive and negative effects, demonstrating an increase in the root length and other growth parameters, along with a decrease in Malondialdehyde (MDA) and hydrogen peroxide concentrations. However, different concentrations of salt (50 mM and 100 mM) had an overall negative impact on all assessed parameters. In exploring the combined effects of ZnO NPs and salt, various concentrations yielded different outcomes. Significantly, only 50 mM NaCl combined with 50 ppm ZnO NPs demonstrated positive effects on pea physiology, leading to a substantial increase in root length and improvement in other physiological parameters. Moreover, this treatment resulted in decreased levels of MAD, Glycine betaine, and hydrogen peroxide. Conversely, all other treatments exhibited negative effects on the assessed parameters, possibly due to the high concentrations of both stressors. The findings offered valuble reference data for research on the impact of salinity on growth parameters of future agriculture crop.
Asunto(s)
Pisum sativum , Estrés Salino , Óxido de Zinc , Óxido de Zinc/farmacología , Pisum sativum/efectos de los fármacos , Pisum sativum/crecimiento & desarrollo , Pisum sativum/fisiología , Pisum sativum/metabolismo , Estrés Salino/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Malondialdehído/metabolismo , Peróxido de Hidrógeno/metabolismo , Nanopartículas del Metal , Nanopartículas , SalinidadRESUMEN
Silymarin, an antioxidant, is locally used for kidney and heart ailments. However, its limited water solubility and less oral bioavailability limit its therapeutic efficiency. The present study investigated the enhancement of solubility and bioavailability of silymarin by loading it in Cordia myxa plant extract-coated zeolitic imidazole framework (CME@ZIF-8) against carbon tetrachloride (CCl4)-induced nephrotoxicity and cardiac toxicity in albino rats. The synthesized PEG-coated silymarin drug-loaded CME@ZIF-8 MOFs (PEG-Sily@CME@ZIF-8) were characterized by scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, UV-visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and zeta potential. The average crystal size of CME@ZIF-8 and PEG-Sily@CME@ZIF-8 was 12.69 and 16.81 nm, respectively. The silymarin drug loading percentage in PEG-Sily@CME@ZIF-8 was 33.05% (w/w). In the animal model with CCl4 treatment, different parameters like serum profile, enzymatic level, genotoxicity, and histopathology were assessed. Treatment with PEG-Sily@CME@ZIF-8 with different doses of 500, 1000, and 1500 µg/kg body weight efficiently ameliorated the alterations in the antioxidant defenses, biochemical parameters, and histopathological alterations and DNA damage in comparison to silymarin drug in a CCl4-induced toxicity rat model via alleviating the cellular abnormalities and attenuation of normal antioxidant enzymes levels. Moreover, the molecular mechanism of drug-silymarin interaction with the target protein was investigated. It involves the binding pockets of silymarin molecules with VEGFR, TNF-α, NLRP3, AT1R, NOX1, RIPK1, Caspase-3, CHOP, and MMP-9 proteins, elucidating the silymarin-protein interactions by the formation of hydrogen bonds and hydrophobic interactions. This study suggests that the nanodrug PEG-Sily@CME@ZIF-8 MOFs protect the kidneys and heart possibly by mitigating oxidative stress more efficiently than the conventional drug silymarin.
Asunto(s)
Tamaño de la Partícula , Silimarina , Animales , Silimarina/química , Silimarina/farmacología , Silimarina/administración & dosificación , Ratas , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ensayo de Materiales , Antioxidantes/química , Antioxidantes/farmacología , Zeolitas/química , Zeolitas/farmacología , Tetracloruro de Carbono , Masculino , Imidazoles/química , Imidazoles/farmacología , Ratas WistarRESUMEN
Understanding the heavy metals (HMs) tolerance mechanism is crucial for improving plant growth in metal-contaminated soil. In order to evaluate the lead (Pb) tolerance mechanism in Brassica species, a comparative proteomic study was used. Thirteen-day-old seedlings of B. juncea and B. napus were treated with different Pb(NO3)2 concentrations at 0, 3, 30, and 300 mg/L. Under 300 mg/L Pb(NO3)2 concentration, B. napus growth was significantly decreased, while B. juncea maintained normal growth similar to the control. The Pb accumulation was also higher in B. napus root and shoot compared to B. juncea. Gel-free proteomic analysis of roots revealed a total of 68 and 37 differentially abundant proteins (DAPs) in B. juncea and B. napus-specifically, after 300 mg/L Pb exposure. The majority of these proteins are associated with protein degradation, cellular respiration, and enzyme classification. The upregulated RPT2 and tetrapyrrole biosynthesis pathway-associated proteins maintain the cellular homeostasis and photosynthetic rate in B. juncea. Among the 55 common DAPs, S-adenosyl methionine and TCA cycle proteins were upregulated in B. juncea and down-regulated in B. napus after Pb exposure. Furthermore, higher oxidative stress also reduced the antioxidant enzyme activity in B. napus. The current finding suggests that B. juncea is more Pb tolerant than B. napus, possibly due to the upregulation of proteins involved in protein recycling, degradation, and tetrapyrrole biosynthesis pathway.
Asunto(s)
Plomo , Proteínas de Plantas , Proteómica , Tetrapirroles , Plomo/toxicidad , Plomo/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteómica/métodos , Tetrapirroles/metabolismo , Tetrapirroles/biosíntesis , Planta de la Mostaza/metabolismo , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/genética , Brassica/metabolismo , Brassica/efectos de los fármacos , Brassica/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacosRESUMEN
The aim of current study was to prepared zinc oxide nanofertilzers by ecofriendly friendly, economically feasible, free of chemical contamination and safe for biological use. The study focused on crude extract of Withania coagulans as reducing agent for the green synthesis of ZnO nano-particles. Biosynthesized ZnO NPs were characterized by UV-Vis spectroscopy, XRD, FTIR and GC-MS analysis. However, zinc oxide as green Nano fertilizer was used to analyze responses induced by different doses of ZnO NPs [0, 25, 50,100, 200 mg/l and Zn acetate (100 mg/l)] in Triticum aestivum (wheat). The stimulatory and inhibitory effects of foliar application of ZnO NPs were studied on wheat (Triticum aestivum) with aspect of biomass accumulation, morphological attributes, biochemical parameters and anatomical modifications. Wheat plant showed significant (p < 0.01) enhancement of growth parameters upon exposure to ZnO NPs at specific concentrations. In addition, wheat plant showed significant increase in biochemical attributes, chlorophyll content, carotenoids, carbohydrate and protein contents. Antioxidant enzyme (POD, SOD, CAT) and total flavonoid content also confirmed nurturing impact on wheat plant. Increased stem, leaf and root anatomical parameters, all showed ZnO NPs mitigating capacity when applied to wheat. According to the current research, ZnO NPs application on wheat might be used to increase growth, yield, and Zn biofortification in wheat plants.
Asunto(s)
Fertilizantes , Oxidación-Reducción , Triticum , Óxido de Zinc , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Triticum/efectos de los fármacos , Óxido de Zinc/química , Óxido de Zinc/farmacología , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Clorofila/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Nanopartículas del Metal/química , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrolloRESUMEN
Rapid global industrialization and an increase in population have enhanced the risk of heavy metals accumulation in plant bodies to disrupt the morphological, biochemical, and physiological processes of plants. To cope with this situation, reduced graphene oxide (rGO) NPs were used first time to mitigate abiotic stresses caused in plant. In this study, rGO NPs were synthesized and reduced with Tecoma stans plant leave extract through modified Hummer's methods. The well prepared rGO NPs were characterized by ultra-violet visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Zeta potential, and scanning electron microscopy (SEM). However, pot experiment was conducted with four different concentrations (15, 30, 60, 120 mg/L) of rGO NPs and three different concentrations (300, 500,700 mg/L) of lead (Pb) stress were applied. To observe the mitigative effects of rGO NPs, 30 mg/L of rGO NPs and 700 mg/L of Pb were used in combination. Changes in morphological and biochemical characteristics of wheat plants were observed for both Pb stress and rGO NPs treatments. Pb was found to inhibit the morphological and biochemical characteristics of plants. rGO NPs alone as well as in combination with Pb was found to increase the chlorophyll content of wheat plants. Under Pb stress conditions and rGO NPs treatments, antioxidant enzyme activities like ascorbate peroxidases (APX), superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were observed. Current findings revealed that greenly reduced graphene oxide NPs can effectively promote growth in wheat plants under Pb stress by elevating chlorophyll content of leaves, reducing the Pb uptake, and suppressing ROS produced due to Pb toxicity.
Asunto(s)
Grafito , Plomo , Triticum , Plomo/toxicidad , Plomo/metabolismo , Triticum/efectos de los fármacos , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo , Clorofila/metabolismoRESUMEN
Raisins, derived from dried grapes, represent a valuable commodity rich in secondary metabolites, particularly volatile organic compounds (VOCs). The primary objective of this review is to identify the VOCs that are influencing the aromatic profile of raisins to improve consumer preferences. However, extensive research has been done to optimize grape drying methods for different raisin attributes. In the context of this review, an in-depth investigation of published literature revealed the extraction of over 120 VOCs from raisins using SPME. Furthermore, we explored factors shaping raisin aroma and the sources of VOC generation. This review aims to pinpoint research gaps and provide an opportunity for future developments in studying raisins' aroma. This involves integrating advanced analytical techniques, examining processing method impacts, and considering consumer perception to enhance the overall understanding of raisin aromas. The outcomes are anticipated to provide valuable insights for the industry and the scientific community.
RESUMEN
Biological and green synthesis of nanomaterial is a superior choice over chemical and physical methods due to nanoscale attributes implanted in a green chemistry matrix, have sparked a lot of interest for their potential uses in a variety of sectors. This research investigates the growing relevance of nanocomposites manufactured using ecologically friendly, green technologies. The transition to green synthesis correlates with the worldwide drive for environmentally sound procedures, limiting the use of traditional harsh synthetic techniques. Herein, manganese was decorated on ZnO NPs via reducing agent of Withania-extract and confirmed by UV-spectrophotometry with highest peak at 1:2 ratio precursors, and having lower bandgap energy (3.3 eV). XRD showed the sharp peaks and confirms the formation of nanoparticles, having particle size in range of 11-14 nm. SEM confirmed amorphous tetragonal structure while EDX spectroscopy showed the presence of Zn and Mn in all composition. Green synthesized Mn-decorated ZnO-NPs screened against bacterial strains and exhibited excellent antimicrobial activities against gram-negative and gram-positive bacteria. To check further, applicability of synthesized Mn-decorated Zn nanocomposites, their photocatalytic activity against toxic water pollutants (methylene blue (MB) dye) were also investigated and results showed that 53.8% degradation of MB was done successfully. Furthermore, the installation of green chemistry in synthesizing nanocomposites by using plant extract matrix optimizes antibacterial characteristics, antioxidant and biodegradability, helping to build sustainable green Mn decorated ZnO nanomaterial. This work, explains how biologically friendly Mn-doped ZnO nanocomposites can help reduce the environmental impact of traditional packaging materials. Based on these findings, it was determined that nanocomposites derived from biological resources should be produced on a wide scale to eradicate environmental and water contaminants through degradation.
Asunto(s)
Nanocompuestos , Nanopartículas , Óxido de Zinc , Óxido de Zinc/química , Antibacterianos/química , Antioxidantes , Nanocompuestos/químicaRESUMEN
Advent of proteomic techniques has made it possible to identify a broad spectrum of proteins in living systems. Studying the impact of nanoparticle (NP)-mediated plant protein responses is an emerging field. NPs are continuously being released into the environment and directly or indirectly affect plant's biochemistry. Exposure of plants to NPs, especially crops, poses a significant risk to the food chain, leading to changes in underlying metabolic processes. Once absorbed by plants, NPs interact with cellular proteins, thereby inducing changes in plant protein patterns. Based on the reactivity, properties, and translocation of nanoparticles, NPs can interfere with proteins involved in various cellular processes in plants such as energy regulation, redox metabolism, and cytotoxicity. Such interactions of NPs at the subcellular level enhance ROS scavenging activity, especially under stress conditions. Although higher concentrations of NPs induce ROS production and hinder oxidative mechanisms under stress conditions, NPs also mediate metabolic changes from fermentation to normal cellular processes. Although there has been lots of work conducted to understand the different effects of NPs on plants, the knowledge of proteomic responses of plants toward NPs is still very limited. This review has focused on the multi-omic analysis of NP interaction mechanisms with crop plants mainly centering on the proteomic perspective in response to both stress and non-stressed conditions. Furthermore, NP-specific interaction mechanisms with the biological pathways are discussed in detail.
Asunto(s)
Nanopartículas , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Nanopartículas/química , Proteínas de Plantas/metabolismo , Productos Agrícolas/metabolismoRESUMEN
It is commonly known that silymarin, a phytoconstituent obtained from the Silybum marianum plant, has hepatoprotective and antioxidative properties. However, its low oral bioavailability and poor water solubility negatively impact its therapeutic efficacy. The goal of the present study was to determine the efficiency of the Cordia myxa extract-based synthesized zeolitic imidazole metal-organic framework (CME@ZIF-8 MOF) for increasing silymarin's bioavailability. A coprecipitation technique was used to synthesize the CME@ZIF-8 and polyethylene glycol-coated silymarin-loaded MOFs (PEG-Sily@CME@ZIF-8) and a complete factorial design was used to optimize them. The crystalline size of CME@ZIF-8 was 14.7 nm and the size of PEG-Sily@CME@ZIF-8 was 17.39 nm. The loading percentage of the silymarin drug in CME@ZIF-8 was 33.5%. The optimized formulations were then characterized by ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction, Fourier transform IR spectroscopy, surface morphology, gas chromatography-mass spectrometry, and drug release in an in vitro medium. Additionally, a rat model was used to investigate the optimized formulation's in vivo hepatoprotective effectiveness. The synthesized silymarin-loaded CME@ZIF-8 MOFs were distinct particles with a porous, spongelike shape and a diameter of (size) nm. Furthermore, the designed silymarin-loaded PEG-Sily@CME@ZIF-8 MOF formulation exhibited considerable silymarin release from the synthesized formula in dissolution investigations. The in vivo evaluation studies demonstrated that the prepared PEG-Sily@CME@ZIF-8 MOFs effectively exhibited a hepatoprotective effect in comparison with free silymarin in a CCl4-based induced-hepatotoxicity rat model via ameliorating the normal antioxidant enzyme levels and restoring the cellular abnormalities produced by CCl4 toxication. In combination, biologically produced CME@ZIF-8 may promise to be a viable biologically based nanocarrier that can enhance the loading and release of silymarin medication, which has low solubility in water.
RESUMEN
During smoking, nicotine, the most bountiful compound in cigarettes, is absorbed into the body by the lungs and quickly metabolized in the liver, causing three major adverse impacts such as toxic, neoplastic, and immunomodulatory effects. Saponins extracted from several plants are reported to exhibit various biological actions, such as anticancer effects. So, the potential protective effect of fenugreek saponin and nanofenugreek saponin against toxicity induced by nicotine in male rats was investigated in this study. Animals were exposed to nicotine (1.5 mg/kg/day) and/or treated with fenugreek saponin (25, 50, and 100 mg/kg/day) and nanofenugreek saponin (20, 40, and 80 mg/kg/day). Comet assays, histopathological examination, and analyses for the expression levels of glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) genes in liver tissues as well as the activity of glutathione peroxidase (GPx) and glutathione-S-transferase (GST) were conducted. The results revealed that nicotine treatment induced a significant increase in DNA damage, decrease in the expression levels of (GLAST) and (GLT-1) genes, and increase in histopathological alterations in liver tissues. Moreover, nicotine treatment induced a significant reduction in the activity of antioxidant enzymes GPx and GST. On the other hand, administration of fenugreek saponin or nanofenugreek saponin with nicotine significantly decreased the DNA damage, increased the expression levels of (GLAST) and (GLT-1) genes, and decreased histopathological alterations in liver tissues. Additionally, a significant increase in the activities of GPx and GST was observed. The results suggested that DNA damage and histological injuries induced by nicotine were decreased by the administration of fenugreek saponin or nanofenugreek saponin; thus, fenugreek saponin and nanofenugreek saponin can be used as ameliorative agents against nicotine toxicity.
RESUMEN
Immense crowd of heavy metal in cultivated land is evolving as a global concern as a result of boosted level of soil toxicity. Amongst various metals, Lead (Pb) contamination has become alarming for plant and human heath through ingesting of polluted soils and food crops. To counterfeit this, a nanotechnological neutralizer effective in form of soiling of cobalt oxide Co3O4 Nbs to Acacia jacquemontii and Acacia nilotica with various meditations as 25, 50, 75 and 100 ppm). A Substantial result was observed on growth of plants but premium results were got by applications of cobalt oxide Nbs at 75 ppm. By this means, enhanced root length (39%), fresh weight (32%), shoot length (58%), as well as dry weight (28%) in selected Acacia species compared to control. Chlrophy contents in A. jacquemontii were estimated to be 0.23, 2.73 and 3.19 mg/L with treated with different concentrations of cobalt Nbs while in A. nilotica, the contents were 0.51, 2.93 and 3.12 mg/L respectively on same concentration. The atomic absorption (AAS), antioxidant activity and defendable positive comeback by using Co3O4 Nbs. Hence, the greenly synthesized Co3O4 Nbs counter acts lead toxicity to override and preserving the growth of plant. Such nanotechnological kits can consequently enhance the alternative system to stunned toxicity for distinguish the yield demand end to end with the progress of agronomic management approaches.
Asunto(s)
Acacia , Contaminantes del Suelo , Humanos , Plomo/toxicidad , Acacia/fisiología , Plantas , Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisisRESUMEN
Bacterial infectious disorders are becoming a major health problem for public health. The zeolitic imidazole framework-8 with a novel Cordia myxa extract-based (CME@ZIF-8) nanocomposite showed variable functionality, high porosity, and bacteria-killing activity against Staphylococcus aureus, and Escherichia coli strains have been created by using a straightforward approach. The sizes of synthesized zeolitic imidazole framework-8 (ZIF-8) and CME@ZIF-8 were 11.38 nm and 12.44 nm, respectively. Prepared metal organic frameworks have been characterized by gas chromatography-mass spectroscopy, Fourier transform spectroscopy, UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. An antibacterial potential comparison between CME@ZIF-8 and zeolitic imidazole framework-8 has shown that CME@ZIF-8 was 31.3%, 28.57%, 46%, and 47% more efficient than ZIF-8 against Staphylococcus aureus and 43.7%, 42.8%, 35.7%, and 70% more efficient against Escherichia coli, while it was 31.25%, 33.3%, 46%, and 46% more efficient than the commercially available ciprofloxacin drug against Staphylococcus aureus and 43.7%, 42.8%, 35.7%, and 70% more efficient against Escherichia coli, respectively, for 750, 500, 250, and 125 µg mL-1. Minimum inhibitory concentration values of CME@ZIF-8 for Escherichia coli and Staphylococcus aureus were 15.6 and 31.25 µg/mL respectively, while the value of zeolitic imidazole framework-8 alone was 62.5 µg/mL for both Escherichia coli and Staphylococcus aureus. The reactive oxygen species generated by CME@ZIF-8 destroys the bacterial cell and its organelles. Consequently, the CME@ZIF-8 nanocomposites have endless potential applications for treating infectious diseases.
RESUMEN
Litchi polyphenols have very specific biological activities. Nevertheless, the low and inconsistent oral bioavailability and instability hinder the further application of litchi polyphenols in food systems. This work prepared litchi polyphenols loaded chitosan nanoparticles (LP-CSNPs) by ionic gelation method to enhance the encapsulation on the properties of litchi polyphenols. The optimum conditions of formation via single factors and the Box-Behnken design were chitosan (CS) concentration 1.065 mg/mL, sodium tripolyphosphate (TPP) concentration 0.975 mg/mL, and the mass ratios of polyphenols and CS 1:1 with encapsulation efficiency (EE%) of 45.53%. LP-CSNPs presented the nanosized range of particle size (mean 170 nm), excellent polydispersity index (PDI) (0.156 ± 0.025), and zeta potential values (+ 35.44 ± 0.59). The in vitro release in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8) during 100 h was 58.34% and 81.68%, respectively. LP-CSNPs could effectively improve the storage stability and had great antibacterial activity compared with unencapsulated litchi polyphenols.
RESUMEN
The indoor cultivation of lettuce in a vertical hydroponic system (VHS) under artificial lighting is an energy-intensive process incurring a high energy cost. This study determines the optimal daily light integral (DLI) as a function of photoperiod on the physiological, morphological, and nutritional parameters, as well as the resource use efficiency of iceberg lettuce (cv. Glendana) grown in an indoor VHS. Seedlings were grown in a photoperiod of 12 h, 16 h, and 20 h with a photosynthetic photon flux density (PPFD) of 200 µmol m-2 s-1 using white LED lights. The results obtained were compared with VHS without artificial lights inside the greenhouse. The DLI values for 12 h, 16 h, and 20 h were 8.64, 11.5, and 14.4 mol m-2 day-1, respectively. The shoot fresh weight at harvest increased from 275.5 to 393 g as the DLI increased from 8.64 to 11.5 mol m-2 day-1. DLI of 14.4 mol m-2 day-1 had a negative impact on fresh weight, dry weight, and leaf area. The transition from VHS without artificial lights to VHS with artificial lights resulted in a 60% increase in fresh weight. Significantly higher water use efficiency of 71 g FW/L and energy use efficiency of 206.31 g FW/kWh were observed under a DLI of 11.5 mol m-2 day-1. The study recommends an optimal DLI of 11.5 mol m-2 day-1 for iceberg lettuce grown in an indoor vertical hydroponic system.
Asunto(s)
Lactuca , Luz , Hidroponía , Fotosíntesis/fisiología , Iluminación/métodosRESUMEN
Evaluation of nanoparticles (NPs) for biomedical applications has received a lot of attention for detailed study on pharmacokinetics prior to clinical application. In this study, pure C-SiO2 (crystalline silica) NPs and SiO2 nanocomposites with silver (Ag) and zinc oxide (ZnO) were prepared by utilizing different synthesis routes such as sol-gel and co-precipitation techniques. The prepared NPs showed highly crystalline nature as confirmed by X-ray diffraction analysis where average crystallite sizes of 35, 16, and 57 nm for C-SiO2, Ag-SiO2, and ZnO-SiO2 NPs, respectively, were calculated. Fourier transform infrared analysis confirmed the presence of functional groups related to the chemicals and procedures used for sample preparation. Due to agglomeration of the prepared NPs, the scanning electron microscope images showed large particle sizes when compared to their crystalline sizes. The optical properties of the prepared NPs such as absorption were obtained with UV-Vis spectroscopy. For in vivo biological evaluation, albino rats, both male and female, kept in different groups were exposed to NPs with 500 µg/kg dose. Hematological, serum biochemistry, histo-architecture, oxidative stress biomarkers, and antioxidant parameters in liver tissues along with various biomarkers for the evaluation of erythrocytes were estimated. The results on hemato-biochemistry, histopathological ailments, and oxidative stress parameters exhibited 95% alteration in the liver and erythrocytes of C-SiO2 NPs-treated rats while 75 and 60% alteration in the liver tissues of rats due to exposure to Ag-SiO2 and ZnO-SiO2 NPs, respectively, when compared with the albino rats of the control (untreated) group. Therefore, the current study showed that the prepared NPs had adverse effects on the liver and erythrocytes causing hepatotoxicity in the albino rats in respective order C-SiO2 > Ag SiO2 > ZnO-SiO2. As the C-SiO2 NPs appeared to be the most toxic, it has been concluded that coating SiO2 on Ag and ZnO reduced their toxicological impact on albino rats. Consequently, it is suggested that Ag-SiO2 and ZnO-SiO2 NPs are more biocompatible than C-SiO2 NPs.
RESUMEN
Illuminating the use of nanomaterials, carbon quantum dots (CQDs) have transfigured the food safety arena because of their bright luminescence, optical properties, low toxicity, and enhanced biocompatibility. Therefore, fluorescent resonance energy transfer, photoinduced electron transfer, and an internal filtering effect mechanism allow precise detection of food additives, heavy metal ions, pathogenic bacteria, veterinary drug residues, and food nutrients. In this review, we describe the primal mechanism of CQD-based fluorescence sensors for food safety inspection. This is an abridged description of the nanodesign and future perspectives of more advanced CQD-based sensors for food safety analysis.
RESUMEN
Litchi's post-harvest pericarp browning is one of the main constraints that drastically affect its visual attributes and market potential. Therefore, the vanillin-taurine Schiff base (VTSB) compound prepared from natural compounds of vanillin and taurine exhibited higher DPPH-radical-scavenging invitro antioxidant activity than vanillin. VTSB first-time report to mitigate the postharvest browning of litchi fruit. In this study, litchi fruits were dipped in 0.3 mM (based on pre-experiment) VTSB solution and stored at 25 ± 1 °C for six days to examine their effects on browning and postharvest quality. Fruit treated with VTSB had lower levels of browning degree (BD), browning index (BI), weight loss, soluble quinone (SQ), relative electrolyte leakage (REL), and malondialdehyde (MDA) than control fruit. Additionally, total anthocyanins and phenolic concentrations, Total soluble solids (TSS), and 2,2-diphenyl-1-picrylhydrazyl-free radical scavenging activity (DPPH-RSA) were preserved higher in VTSB-treated litchi fruit. The levels of Ascorbate peroxidase (APX), Superoxide dismutase (SOD), and Catalase (CAT) were higher in treated fruit, whereas polyphenol oxidase (PPO) and Peroxidase (POD) were decreased during the postharvest period. This study suggested that VTSB would be very useful for different post-harvest problems in the fruit and vegetable industry.
RESUMEN
Massive accumulation of heavy metals in agricultural land as a result of enhanced levels of toxicity in the soil is an emerging global concern. Among various metals, zinc contamination has severe effects on plant and human health through the food chain. To remove such toxicity, a nanotechnological neutralizer, cobalt oxide nanoballs (Co3O4 Nbs) were synthesized by using the extract of Cordia myxa. The Co3O4 Nbs were well characterized via UV-vis spectrophotometry, scanning electron microscopy, and X-ray diffraction techniques. Green-synthesized Co3O4 Nbs were exposed over Acacia jacquemontii and Acacia nilotica at different concentrations (25, 50, 75, and 100 ppm). Highly significant results were observed for plant growth by the application of Co3O4 Nbs at 100 ppm, thereby increasing the root length (35%), shoot length (48%), fresh weight (44%), and dry weight (40%) of the Acacia species with respect to the control. Furthermore, physiological parameters including chlorophyll contents, relative water contents, and osmolyte contents like proline and sugar showed a prominent increase. The antioxidant activity and atomic absorption supported and justified the positive response to using Co3O4 Nbs that mitigated the heavy-metal zinc stress by improving the plant growth. Hence, the biocompatible Co3O4 Nbs counteract the zinc toxicity for governing and maintaining plant growth. Such nanotechnological tools can therefore step up the cropping system and overcome toxicity to meet the productivity demand along with the development of agricultural management strategies.