Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1290042, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034565

RESUMEN

SARS-CoV-2, the virus responsible for the COVID-19 pandemic, belongs to the betacoronavirus genus. This virus has a high mutation rate, which rapidly evolves into new variants with different properties, such as increased transmissibility or immune evasion. Currently, the most prevalent global SARS-CoV-2 variant is Omicron, which is more transmissible than previous variants. Current available vaccines may be less effective against some currently existing SARS-CoV-2 variants, including the Omicron variant. The S1 subunit of the spike protein of SARS-CoV-2 has been a major target for COVID-19 vaccine development. It plays a crucial role in the virus's entry into host cells and is the primary target for neutralizing antibodies. In this study, the S1 subunit of the spike protein of SARS-CoV-2 was engineered and produced at a high level in Nicotiana benthamiana plant. The expression level of the recombinant S1 protein was greater than the 0.5-g/kg fresh weight, and the purification yield was at least ~0.3 g of pure protein/kg of plant biomass, which would make a plant-produced S1 antigen an ideal vaccine candidate for commercialization. Purified, the plant-produced SARS-CoV-2 S1 protein exhibited significantly higher binding to the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2). Moreover, we also show that recombinant S1 protein/antigen-elicited antibodies can neutralize the Delta or Omicron variants. Collectively, our results demonstrate that a plant-produced S1 antigen could be a promising vaccine candidate against SARS-CoV-2 variants including Omicron.

2.
Front Plant Sci ; 14: 1202570, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600182

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel and highly pathogenic coronavirus that caused an outbreak in Wuhan City, China, in 2019 and then spread rapidly throughout the world. Although several coronavirus disease 2019 (COVID-19) vaccines are currently available for mass immunization, they are less effective against emerging SARS-CoV-2 variants, especially the Omicron (B.1.1.529). Recently, we successfully produced receptor-binding domain (RBD) variants of the spike (S) protein of SARS-CoV-2 and an antigen cocktail in Nicotiana benthamiana, which are highly produced in plants and elicited high-titer antibodies with potent neutralizing activity against SARS-CoV-2. In this study, based on neutralization ability, we demonstrate that plant-produced RBD and cocktail-based vaccine candidates are highly effective against SARS-CoV-2, independently of its emerging variants. These data demonstrate that plant-produced RBD and cocktail-based proteins are the most promising vaccine candidates and may protect against Delta and Omicron-mediated COVID-19. This is the first report describing vaccines against SARS-CoV-2, which demonstrate significant activities against Delta and Omicron variants.

3.
Front Plant Sci ; 12: 742875, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938305

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread to more than 222 countries and has put global public health at high risk. The world urgently needs a safe, cost-effective SARS-CoV-2 vaccine as well as therapeutic and antiviral drugs to combat COVID-19. Angiotensin-converting enzyme 2 (ACE2), as a key receptor for SARS-CoV-2 infections, has been proposed as a potential therapeutic tool in patients with COVID-19. In this study, we report a high-level production (about ∼0.75 g/kg leaf biomass) of human soluble (truncated) ACE2 in the Nicotiana benthamiana plant. After the Ni-NTA single-step, the purification yields of recombinant plant produced ACE2 protein in glycosylated and deglycosylated forms calculated as ∼0.4 and 0.5 g/kg leaf biomass, respectively. The plant produced recombinant human soluble ACE2s successfully bind to the SARS-CoV-2 spike protein. Importantly, both deglycosylated and glycosylated forms of ACE2 are stable at increased temperatures for extended periods of time and demonstrated strong anti-SARS-CoV-2 activities in vitro. The half maximal inhibitory concentration (IC50) values of glycosylated ACE2 (gACE2) and deglycosylated ACE2 (dACE2) were ∼1.0 and 8.48 µg/ml, respectively, for the pre-entry infection, when incubated with 100TCID50 of SARS-CoV-2. Therefore, plant produced soluble ACE2s are promising cost-effective and safe candidates as a potential therapeutic tool in the treatment of patients with COVID-19.

4.
Vaccines (Basel) ; 9(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34835268

RESUMEN

The COVID-19 pandemic has put global public health at high risk, rapidly spreading around the world. Although several COVID-19 vaccines are available for mass immunization, the world still urgently needs highly effective, reliable, cost-effective, and safe SARS-CoV-2 coronavirus vaccines, as well as antiviral and therapeutic drugs, to control the COVID-19 pandemic given the emerging variant strains of the virus. Recently, we successfully produced receptor-binding domain (RBD) variants in the Nicotiana benthamiana plant as promising vaccine candidates against COVID-19 and demonstrated that mice immunized with these antigens elicited a high titer of RBD-specific antibodies with potent neutralizing activity against SARS-CoV-2. In this study, we engineered the nucleocapsid (N) protein and co-expressed it with RBD of SARS-CoV-2 in Nicotiana benthamiana plant to produce an antigen cocktail. The purification yields were about 22 or 24 mg of pure protein/kg of plant biomass for N or N+RBD antigens, respectively. The purified plant produced N protein was recognized by N protein-specific monoclonal and polyclonal antibodies demonstrating specific reactivity of mAb to plant-produced N protein. In this study, for the first time, we report the co-expression of RBD with N protein to produce a cocktail antigen of SARS-CoV-2, which elicited high-titer antibodies with potent neutralizing activity against SARS-CoV-2. Thus, obtained data support that a plant-produced antigen cocktail, developed in this study, is a promising vaccine candidate against COVID-19.

5.
Viruses ; 13(8)2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34452461

RESUMEN

The COVID-19 pandemic, caused by SARS-CoV-2, has rapidly spread to more than 222 countries and has put global public health at high risk. The world urgently needs cost-effective and safe SARS-CoV-2 vaccines, antiviral, and therapeutic drugs to control it. In this study, we engineered the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein and produced it in the plant Nicotiana benthamiana in a glycosylated and deglycosylated form. Expression levels of both glycosylated (gRBD) and deglycosylated (dRBD) RBD were greater than 45 mg/kg fresh weight. The purification yields were 22 mg of pure protein/kg of plant biomass for gRBD and 20 mg for dRBD, which would be sufficient for commercialization of these vaccine candidates. The purified plant-produced RBD protein was recognized by an S protein-specific monoclonal antibody, demonstrating specific reactivity of the antibody to the plant-produced RBD proteins. The SARS-CoV-2 RBD showed specific binding to angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 receptor. In mice, the plant-produced RBD antigens elicited high titers of antibodies with a potent virus-neutralizing activity. To our knowledge, this is the first report demonstrating that mice immunized with plant-produced deglycosylated RBD form elicited high titer of RBD-specific antibodies with potent neutralizing activity against SARS-CoV-2 infection. Thus, obtained data support that plant-produced glycosylated and in vivo deglycosylated RBD antigens, developed in this study, are promising vaccine candidates for the prevention of COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Glicosilación , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Neutralización , Plantas Modificadas Genéticamente , Unión Proteica , Dominios Proteicos , Ingeniería de Proteínas , Estabilidad Proteica , Receptores de Coronavirus/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Células Vero
6.
Sci Rep ; 9(1): 9868, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31285498

RESUMEN

Pfs48/45 is a leading antigen candidate for a transmission blocking (TB) vaccine. However, efforts to produce affordable, safe and correctly folded full-length Pfs48/45 using different protein expression systems have not produced an antigen with satisfactory TB activity. Pfs48/45 has 16 cysteines involved in disulfide bond formation, and the correct formation is critical for proper folding and induction of TB antibodies. Moreover, Pfs48/45 is not a glycoprotein in the native hosts, but contains potential glycosylation sites, which are aberrantly glycosylated during expression in eukaryotic systems. Here, we demonstrate for the first time that full length, Endo H in vivo enzymatic deglycosylated Pfs48/45 antigen is produced at a high level in plants and is structurally stable at elevated temperatures. Sera from mice immunized with this antigen showed strong inhibition in SMFA. Thus, Endo H in vivo enzymatic deglycosylated Pfs48/45 is a promising candidate for the development of an affordable TB vaccine, which may have the potential to save millions.


Asunto(s)
Anticuerpos Bloqueadores/inmunología , Vacunas contra la Malaria/inmunología , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , Nicotiana/metabolismo , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/metabolismo , Glicosilación , Inmunización/métodos , Malaria Falciparum/inmunología , Ratones , Ratones Endogámicos BALB C , Plasmodium falciparum/inmunología
7.
PLoS One ; 14(3): e0213438, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30861020

RESUMEN

A plant expression platform with eukaryotic post-translational modification (PTM) machinery has many advantages compared to other protein expression systems. This promising technology is useful for the production of a variety of recombinant proteins including, therapeutic proteins, vaccine antigens, native additives, and industrial enzymes. However, plants lack some of the important PTMs, including furin processing, which limits this system for the production of certain mammalian complex proteins of therapeutic value. Furin is a ubiquitous proprotein convertase that is involved in the processing (activation) of a wide variety of precursor proteins, including blood coagulation factors, cell surface receptors, hormones and growth factors, viral envelope glycoproteins, etc. and plays a critical regulatory role in a wide variety of cellular events. In this study, we engineered the human furin gene for expression in plants and demonstrated the production of a functional active recombinant truncated human furin in N. benthamiana plant. We demonstrate that plant produced human furin is highly active both in vivo and in vitro and specifically cleaved the tested target proteins, Factor IX (FIX) and Protective Antigen (PA83). We also demonstrate that both, enzymatic deglycosylation and proteolytic processing of target proteins can be achieved in vivo by co-expression of deglycosylating and furin cleavage enzymes in a single cell to produce deglycosylated and furin processed target proteins. It is highly expected that this strategy will have many potential applications in pharmaceutical industry and can be used to produce safe and affordable therapeutic proteins, antibodies, and vaccines using a plant expression system.


Asunto(s)
Furina/biosíntesis , Furina/genética , Nicotiana/genética , Nicotiana/metabolismo , Animales , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Factor IX/genética , Factor IX/metabolismo , Furina/metabolismo , Humanos , Técnicas In Vitro , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/genética , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/metabolismo , Ratones , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proproteína Convertasas/genética , Proproteína Convertasas/metabolismo , Ingeniería de Proteínas/métodos , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
8.
PLoS One ; 12(8): e0183589, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28827815

RESUMEN

A plant transient expression system, with eukaryotic post-translational modification machinery, offers superior efficiency, scalability, safety, and lower cost over other expression systems. However, due to aberrant N-glycosylation, this expression system may not be a suitable expression platform for proteins not carrying N-linked glycans in the native hosts. Therefore, it is crucial to develop a strategy to produce target proteins in a non-glycosylated form while preserving their native sequence, conformation and biological activity. Previously, we developed a strategy for enzymatic deglycosylation of proteins in planta by co-expressing bacterial peptide-N-glycosidase F (PNGase F). Though PNGase F removes oligosaccharides from glycosylated proteins, in so doing it causes an amino acid change due to the deamidation of asparagine to aspartate in the N-X-S/T site. Endo-ß-N-acetylglucosaminidase (EC3.2.1.96, Endo H), another deglycosylating enzyme, catalyzes cleavage between two N-Acetyl-D-glucosamine residues of the chitobiose core of N-linked glycans, leaving a single N-Acetyl-D-glucosamine residue without the concomitant deamidation of asparagine. In this study, a method for in vivo deglycosylation of recombinant proteins in plants by transient co-expression with bacterial Endo H is described for the first time. Endo H was fully active in vivo. and successfully cleaved N-linked glycans from glycoproteins were tested. In addition, unlike the glycosylated form, in vivo Endo H deglycosylated Pfs48/45 was recognized by conformational specific Pfs48/45 monoclonal antibody, in a manner similar to its PNGase F deglycosylated counterpart. Furthermore, the deglycosylated PA83 molecule produced by Endo H showed better stability than a PNGase F deglycosylated counterpart. Thus, an Endo H in vivo deglycosylation approach provides another opportunity to develop vaccine antigens, therapeutic proteins, antibodies, and industrial enzymes.


Asunto(s)
Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/biosíntesis , Streptomyces/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Glicosilación , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/química , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/genética , Proteínas Recombinantes/biosíntesis
9.
Cells Tissues Organs ; 197(1): 14-26, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22987069

RESUMEN

The impact of low-intensity diffuse ultrasound (LIDUS) stimulation on the cytoskeletal organization of chondrocytes seeded in three-dimensional (3D) scaffolds was evaluated. Chondrocytes seeded on 3D chitosan matrices were exposed to LIDUS at 5.0 MHz (approx. 15 kPa, 51 s, 4 applications/day) in order to study the organization of actin, tubulin and vimentin. The results showed that actin presented a punctate cytosolic distribution and tubulin presented a quasiparallel organization of microtubules, whereas vimentin distribution was unaffected. Chondrocytes seeded on 3D scaffolds responded to US stimulation by the disruption of actin stress fibers and were sensitive to the presence of Rho-activated kinase (ROCK) inhibitor (Y27632). The gene expression of ROCK-I, a key element in the formation of stress fibers and mDia1, was significantly upregulated under the application of US. We conclude that the results of both the cytoskeletal analyses and gene expression support the argument that the presence of punctate actin upon US stimulation was accompanied by the upregulation of the RhoA/ROCK pathway.


Asunto(s)
Condrocitos/diagnóstico por imagen , Citoesqueleto/diagnóstico por imagen , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Amidas/farmacología , Supervivencia Celular/fisiología , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/ultraestructura , Técnicas Citológicas/métodos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Forminas , Expresión Génica , Humanos , Microscopía Electrónica de Rastreo , Piridinas/farmacología , Transducción de Señal , Fibras de Estrés/diagnóstico por imagen , Fibras de Estrés/efectos de los fármacos , Fibras de Estrés/metabolismo , Fibras de Estrés/ultraestructura , Andamios del Tejido , Tubulina (Proteína)/metabolismo , Ultrasonografía , Vimentina/metabolismo , Quinasas Asociadas a rho/biosíntesis , Quinasas Asociadas a rho/genética , Proteína de Unión al GTP rhoA/biosíntesis , Proteína de Unión al GTP rhoA/genética
10.
Cells Tissues Organs ; 195(3): 207-21, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21540560

RESUMEN

Tissue-engineered neocartilage with appropriate biomechanical properties holds promise not only for graft applications but also as a model system for controlled studies of chondrogenesis. Our objective in the present research study is to better understand the impact of fiber diameter on the cellular activity of chondrocytes cultured on nanofibrous matrices. By using the electrospinning process, fibrous scaffolds with fiber diameters ranging from 300 nm to 1 µm were prepared and the physicomechanical properties of the scaffolds were characterized. Bovine articular chondrocytes were then seeded and maintained on the scaffolds for 7 and 14 days in culture. An upregulation in the gene expression of collagen II was noted with decreasing fiber diameters. For cells that were cultured on scaffolds with a mean fiber diameter of 300 nm, a 2-fold higher ratio of collagen II/collagen I was noted when compared to cells cultured on sponge-like scaffolds prepared by freeze drying and lyophilization. Integrin (α(5), αv, ß(1)) gene expression was also observed to be influenced by matrix morphology. Our combined results suggest that matrix geometry can regulate and promote the retention of the chondrocyte genotype.


Asunto(s)
Quitosano/química , Condrocitos/citología , Ingeniería de Tejidos/métodos , Animales , Bovinos , Técnicas de Cultivo de Célula/métodos , Procesos de Crecimiento Celular/fisiología , Quitosano/metabolismo , Condrocitos/química , Condrocitos/metabolismo , Humanos , Ratones
11.
J Tissue Eng Regen Med ; 5(10): 815-22, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22002925

RESUMEN

Both pulsed- and square-wave, low-intensity ultrasound (US) signals have been reported to impact chondrocyte function and biosynthetic activity. In this study, a low-intensity diffuse ultrasound (LIDUS) signal at 5.0 MHz (0.14 mW/cm(2)) was employed to stimulate bovine chondrocytes seeded in three-dimensional (3D) chitosan-based matrices. While the duration of application was constant at 51 s, US was applied once, twice, four times and eight times/day, and the impacts of US on the biosynthetic activity of chondrocytes and the expression of chondrocyte-specific genes were evaluated. When stimulated with continuous US for predetermined time intervals, chondrocytes had higher levels of type II collagen, aggrecan, L-Sox5 and Sox9 mRNA expression when compared to controls; however, under the same conditions, the expression of MMP-3 was downregulated. Interestingly, both Sox5 and Sox9 genes coordinately responded to changes in US stimulation and generally mirrored the response of collagen type II transcript to changes in US stimulation. RT-PCR analysis revealed that US stimulation increased the gene expression of cell-surface integrins α5 and ß1. The expression of integrins α2 was downregulated by US treatment, suggesting that multiple integrin subunits may be involved in the regulation of chondrocytic function in response to US stimuli. The enhancement in the abundance of the mRNA transcripts upon US stimulation was observed to correlate with the protein expression of collagen type I, collagen type II, and integrins α5 and ß1. In conclusion, the US stimulation regimen employed was shown to modulate the proliferative capacity, biosynthetic activity and integrin mRNA expression of articular chondrocytes maintained in 3D matrices.


Asunto(s)
Antígenos de Diferenciación/biosíntesis , Cartílago Articular/metabolismo , Quitosano/química , Condrocitos/metabolismo , Regulación de la Expresión Génica , ARN Mensajero/biosíntesis , Sonido , Andamios del Tejido/química , Animales , Cartílago Articular/citología , Bovinos , Células Cultivadas , Condrocitos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...