Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 13(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38930016

RESUMEN

Background/Objectives: Anemia is a frequent multifactorial co-morbidity in end-stage kidney disease (ESKD) associated with morbidity and poor QoL. Apart from insufficient erythropoietin formation, iron deficiency (ID) contributes to anemia development. Identifying patients in need of iron supplementation with current ID definitions is difficult since no good biomarker is available to detect actual iron needs. Therefore, new diagnostic tools to guide therapy are needed. Methods: We performed a prospective cohort study analyzing tissue iron content with MRI-based R2*-relaxometry in 20 anemic ESKD patients and linked it with iron biomarkers in comparison to 20 otherwise healthy individuals. Results: ESKD patients had significantly higher liver (90.1 s-1 vs. 36.1 s-1, p < 0.001) and spleen R2* values (119.8 s-1 vs. 19.3 s-1, p < 0.001) compared to otherwise healthy individuals, while their pancreas and heart R2* values did not significantly differ. Out of the 20 ESKD patients, 17 had elevated spleen and 12 had elevated liver R2* values. KDIGO guidelines (focusing on serum iron parameters) would recommend iron supplementation in seven patients with elevated spleen and four patients with elevated liver R2* values. Conclusions: These findings highlight that liver and especially spleen iron concentrations are significantly higher in ESKD patients compared to controls. Tissue iron overload diverged from classical iron parameters suggesting need of iron supplementation. Measurement of MRI-guided tissue iron distribution might help guide treatment of anemic ESKD patients.

2.
Curr Rheumatol Rep ; 26(8): 302-310, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38739298

RESUMEN

PURPOSE OF REVIEW: To highlight novel findings in the detection of monosodium urate deposits in vessels using dual energy computed tomography, and to discuss the potential clinical implications for gout and hyperuricemia patients. RECENT FINDINGS: Gout is an independent risk factor for cardiovascular disease. However, classical risk calculators do not take into account these hazards, and parameters to identify patients at risk are lacking. Monosodium urate measured by dual energy computed tomography is a well-established technology for the detection and quantification of monosodium urate deposits in peripheral joints and tendons. Recent findings also suggest its applicability to identify vascular urate deposits. Dual energy computed tomography is a promising tool for detection of cardiovascular monosodium urate deposits in gout patients, to better delineate individuals at increased risk for cardiovascular disease.


Asunto(s)
Gota , Tomografía Computarizada por Rayos X , Ácido Úrico , Humanos , Ácido Úrico/análisis , Tomografía Computarizada por Rayos X/métodos , Gota/diagnóstico por imagen , Hiperuricemia/diagnóstico por imagen , Enfermedades Cardiovasculares/diagnóstico por imagen
3.
Mov Disord ; 39(7): 1088-1098, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38686449

RESUMEN

BACKGROUND: Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking. OBJECTIVES: The objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients. METHODS: In FA patients and matched healthy controls, we assessed serum iron parameters, regulatory hormones as well as the expression of regulatory proteins and iron distribution in peripheral blood mononuclear cells (PBMCs). We applied magnetic resonance imaging with R2*-relaxometry to quantify iron storages in the liver, spleen, and pancreas. Across all evaluations, we assessed the influence of the genetic severity as expressed by the length of the shorter GAA-expansion (GAA1). RESULTS: We recruited 40 FA patients (19 women). Compared to controls, FA patients displayed lower serum iron and transferrin saturation. Serum ferritin, hepcidin, mean corpuscular hemoglobin and mean corpuscular volume in FA inversely correlated with the GAA1-repeat length, indicating iron deficiency and restricted availability for erythropoiesis with increasing genetic severity. R2*-relaxometry revealed a reduction of splenic and hepatic iron stores in FA. Liver and spleen R2* values inversely correlated with the GAA1-repeat length. FA PBMCs displayed downregulation of ferritin and upregulation of transferrin receptor and divalent metal transporter-1 mRNA, particularly in patients with >500 GAA1-repeats. In FA PBMCs, intracellular iron was not increased, but shifted toward mitochondria. CONCLUSIONS: We provide evidence for a previously unrecognized iron starvation signature at systemic and cellular levels in FA patients, which is related to the underlying genetic severity. These findings challenge the use of systemic iron lowering therapies in FA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Ataxia de Friedreich , Hierro , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/sangre , Ataxia de Friedreich/metabolismo , Femenino , Masculino , Adulto , Hierro/metabolismo , Hígado/metabolismo , Hígado/patología , Persona de Mediana Edad , Imagen por Resonancia Magnética , Adulto Joven , Bazo/metabolismo , Leucocitos Mononucleares/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Ferritinas/sangre , Ferritinas/metabolismo , Hepcidinas/genética , Hepcidinas/sangre , Hepcidinas/metabolismo , Páncreas/metabolismo , Páncreas/patología
4.
Artículo en Inglés | MEDLINE | ID: mdl-38652590

RESUMEN

OBJECTIVE: To determine the association of cardiovascular atherosclerotic plaque monosodium urate deposits with the occurrence of major cardiovascular events in gout and hyperuricemia patients. METHODS: This retrospective cohort study included patients with clinically suspicion of gout, who performed a dual energy computed tomography of the affected limb and thorax between June 1st, 2012 and December 5th, 2019. Clinical and laboratory parameters were retrieved from patients charts. Established cardiovascular risk factors were evaluated. Medical history review identified the presence of major adverse cardiac events with a median follow up time of 33 months (range 0-108 months) after the performed computed tomography scan. RESULTS: Full data sets were available for 189 patients: 131 (69.3%) gout patients, 40 (21.2%) hyperuricemia patients, and 18 (9.5%) controls. Patients with cardiovascular monosodium urate deposits (n = 85/189, 45%) revealed increased serum acute phase reactants, uric acid levels and calcium scores in computed tomography compared with patients without cardiovascular monosodium urate deposits. Major adverse cardiac events were observed in 35 patients (18.5%) with a higher prevalence in those patients revealing cardiovascular monosodium urate deposits (n = 22/85, 25.9%) compared with those without cardiovascular monosodium urate deposits (n = 13/104, 12.5%, OR 2.4, p= 0.018). CONCLUSION: This is the first study demonstrating the higher hazard of major adverse cardiac events in patients with dual energy computed tomography-verified cardiovascular monosodium urate deposits. The higher prevalence of cardiac events in patients with cardiovascular monosodium urate deposits may facilitate risk stratification of gout patients, as classical cardiovascular risk scores or laboratory markers fail in their proper identification.

5.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35743233

RESUMEN

Macrophages are at the center of innate pathogen control and iron recycling. Divalent metal transporter 1 (DMT1) is essential for the uptake of non-transferrin-bound iron (NTBI) into macrophages and for the transfer of transferrin-bound iron from the endosome to the cytoplasm. As the control of cellular iron trafficking is central for the control of infection with siderophilic pathogens such as Salmonella Typhimurium, a Gram-negative bacterium residing within the phagosome of macrophages, we examined the potential role of DMT1 for infection control. Bone marrow derived macrophages lacking DMT1 (DMT1fl/flLysMCre(+)) present with reduced NTBI uptake and reduced levels of the iron storage protein ferritin, the iron exporter ferroportin and, surprisingly, of the iron uptake protein transferrin receptor. Further, DMT1-deficient macrophages have an impaired control of Salmonella Typhimurium infection, paralleled by reduced levels of the peptide lipocalin-2 (LCN2). LCN2 exerts anti-bacterial activity upon binding of microbial siderophores but also facilitates systemic and cellular hypoferremia. Remarkably, nifedipine, a pharmacological DMT1 activator, stimulates LCN2 expression in RAW264.7 macrophages, confirming its DMT1-dependent regulation. In addition, the absence of DMT1 increases the availability of iron for Salmonella upon infection and leads to increased bacterial proliferation and persistence within macrophages. Accordingly, mice harboring a macrophage-selective DMT1 disruption demonstrate reduced survival following Salmonella infection. This study highlights the importance of DMT1 in nutritional immunity and the significance of iron delivery for the control of infection with siderophilic bacteria.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Hierro , Infecciones por Salmonella , Animales , Hierro/metabolismo , Lipocalina 2/genética , Lipocalina 2/metabolismo , Macrófagos/metabolismo , Ratones , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Transferrina/metabolismo
6.
Eur J Immunol ; 52(8): 1285-1296, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35491910

RESUMEN

Severe coronavirus disease 19 (COVID-19) manifests with systemic immediate proinflammatory innate immune activation and altered iron turnover. Iron homeostasis, differentiation, and function of myeloid leukocytes are interconnected. Therefore, we characterized the cellularity, surface marker expression, and iron transporter phenotype of neutrophils and monocyte subsets in COVID-19 patients within 72 h from hospital admission, and analyzed how these parameters relate to infection severity. Between March and November 2020, blood leukocyte samples from hospitalized COVID-19 patients (n = 48) and healthy individuals (n = 7) were analyzed by flow cytometry enabling comparative analysis of 40 features. Inflammation-driven neutrophil expansion, depletion of CD16+ nonclassical monocytes, and changes in surface expression of neutrophil and monocyte CD64 and CD86 were associated with COVID-19 severity. By unsupervised self-organizing map clustering, four patterns of innate myeloid response were identified and linked to varying levels of systemic inflammation, altered cellular iron trafficking and the severity of disease. These alterations of the myeloid leukocyte compartment during acute COVID-19 may be hallmarks of inefficient viral control and immune hyperactivation and may help at risk prediction and treatment optimization.


Asunto(s)
COVID-19 , Monocitos , Humanos , Inflamación , Pacientes Internos , Hierro/metabolismo , Fenotipo
7.
Sci Rep ; 12(1): 3677, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35256646

RESUMEN

The CovILD study is a prospective, multicenter, observational cohort study to systematically follow up patients after coronavirus disease-2019 (COVID-19). We extensively evaluated 145 COVID-19 patients at 3 follow-up visits scheduled for 60, 100, and 180 days after initial confirmed diagnosis based on typical symptoms and a positive reverse transcription-polymerase chain reaction (RT-PCR) for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We employed comprehensive pulmonary function and laboratory tests, including serum concentrations of IgG against the viral spike (S) glycoprotein, and compared the results to clinical data and chest computed tomography (CT). We found that at the 60 day follow-up, 131 of 145 (90.3%) participants displayed S-specific serum IgG levels above the cut-off threshold. Notably, the highly elevated IgG levels against S glycoprotein positively correlated with biomarkers of immune activation and negatively correlated with pulmonary function and the extent of pulmonary CT abnormalities. Based on the association between serum S glycoprotein-specific IgG and clinical outcome, we generated an S-specific IgG-based recovery score that, when applied in the early convalescent phase, accurately predicted delayed pulmonary recovery after COVID-19. Therefore, we propose that S-specific IgG levels serve as a useful immunological surrogate marker for identifying at-risk individuals with persistent pulmonary injury who may require intensive follow-up care after COVID-19.


Asunto(s)
COVID-19/inmunología , Inmunoglobulina G/inmunología , Pulmón/patología , Glicoproteína de la Espiga del Coronavirus/inmunología , COVID-19/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Estudios Prospectivos , Pruebas de Función Respiratoria , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Antibiotics (Basel) ; 10(10)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34680781

RESUMEN

The calcium channel blocker nifedipine induces cellular iron export, thereby limiting the availability of the essential nutrient iron for intracellular pathogens, resulting in bacteriostatic activity. To study if nifedipine may exert a synergistic anti-microbial activity when combined with antibiotics, we used the mouse macrophage cell line RAW267.4, infected with the intracellular bacterium Salmonella Typhimurium, and exposed the cells to varying concentrations of nifedipine and/or ampicillin, azithromycin and ceftriaxone. We observed a significant additive effect of nifedipine in combination with various antibiotics, which was not observed when using Salmonella, with defects in iron uptake. Of interest, increasing intracellular iron levels increased the bacterial resistance to treatment with antibiotics or nifedipine or their combination. We further showed that nifedipine increases the expression of the siderophore-binding peptide lipocalin-2 and promotes iron storage within ferritin, where the metal is less accessible for bacteria. Our data provide evidence for an additive effect of nifedipine with conventional antibiotics against Salmonella, which is partly linked to reduced bacterial access to iron.

9.
EBioMedicine ; 71: 103568, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34488018

RESUMEN

BACKGROUND: Iron deficiency anaemia (IDA) is a major health concern. However, preventive iron supplementation in regions with high burden of infectious diseases resulted in an increase of infection related morbidity and mortality. METHODS: We fed male C57BL/6N mice with either an iron deficient or an iron adequate diet. Next, they received oral iron supplementation or placebo followed by intraperitoneal infection with Salmonella Typhimurium (S.Tm). FINDINGS: We found that mice with IDA had a poorer clinical outcome than mice on an iron adequate diet. Interestingly, iron supplementation of IDA mice resulted in higher bacterial burden in organs and shortened survival. Increased transferrin saturation and non-transferrin bound iron in the circulation together with low expression of ferroportin facilitated the access of the pathogen to iron and promoted bacterial growth. Anaemia, independent of iron supplementation, was correlated with reduced neutrophil counts and cytotoxic T cells. With iron supplementation, anaemia additionally correlated with increased splenic levels of the cytokine IL-10, which is suggestive for a weakened immune control to S.Tm infection. INTERPRETATION: Supplementing iron to anaemic mice worsens the clinical course of bacterial infection. This can be traced back to increased iron delivery to bacteria along with an impaired anti-microbial immune response. Our findings may have important implications for iron supplementation strategies in areas with high endemic burden of infections, putting those individuals, who potentially profit most from iron supplementation for anaemia, at the highest risk for infections. FUNDING: Financial support by the Christian Doppler Laboratory for Iron Metabolism and Anemia Research.


Asunto(s)
Anemia Ferropénica/tratamiento farmacológico , Bacteriemia/complicaciones , Hierro/sangre , Infecciones por Salmonella/complicaciones , Anemia Ferropénica/sangre , Anemia Ferropénica/complicaciones , Animales , Bacteriemia/sangre , Bacteriemia/patología , Carga Bacteriana , Hierro/administración & dosificación , Hierro/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones por Salmonella/sangre , Infecciones por Salmonella/patología
10.
Front Cell Infect Microbiol ; 11: 705087, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368018

RESUMEN

Introduction: Hepcidin is the systemic master regulator of iron metabolism as it degrades the cellular iron exporter ferroportin. In bacterial infections, hepcidin is upregulated to limit circulating iron for pathogens, thereby increasing iron retention in macrophages. This mechanism withholds iron from extracellular bacteria but could be of disadvantage in infections with intracellular bacteria. We aimed to understand the role of hepcidin in infections with intra- or extracellular bacteria using different hepcidin inhibitors. Methods: For the experiments LDN-193189 and oversulfated heparins were used, which interact with the BMP6-SMAD pathway thereby inhibiting hepcidin expression. We infected male C57BL/6N mice with either the intracellular bacterium Salmonella Typhimurium or the extracellular bacterium Escherichia coli and treated these mice with the different hepcidin inhibitors. Results: Both inhibitors effectively reduced hepcidin levels in vitro under steady state conditions and upon stimulation with the inflammatory signals interleukin-6 or lipopolysaccharide. The inhibitors also reduced hepcidin levels and increased circulating iron concentration in uninfected mice. However, both compounds failed to decrease liver- and circulating hepcidin levels in infected mice and did not affect ferroportin expression in the spleen or impact on serum iron levels. Accordingly, both BMP-SMAD signaling inhibitors did not influence bacterial numbers in different organs in the course of E.coli or S.Tm sepsis. Conclusion: These data indicate that targeting the BMP receptor or the BMP-SMAD pathway is not sufficient to suppress hepcidin expression in the course of infection with both intra- or extracellular bacteria. This suggests that upon pharmacological inhibition of the central SMAD-BMP pathways during infection, other signaling cascades are compensatorily induced to ensure sufficient hepcidin formation and iron restriction to circulating microbes.


Asunto(s)
Proteína Morfogenética Ósea 6/metabolismo , Bacterias Gramnegativas/patogenicidad , Hepcidinas , Sepsis , Proteínas Smad/metabolismo , Animales , Hierro , Masculino , Ratones , Ratones Endogámicos C57BL , Sepsis/tratamiento farmacológico
11.
JCI Insight ; 6(13)2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34236052

RESUMEN

Iron is an essential nutrient for mammals as well as for pathogens. Inflammation-driven changes in systemic and cellular iron homeostasis are central for host-mediated antimicrobial strategies. Here, we studied the role of the iron storage protein ferritin H (FTH) for the control of infections with the intracellular pathogen Salmonella enterica serovar Typhimurium by macrophages. Mice lacking FTH in the myeloid lineage (LysM-Cre+/+Fthfl/fl mice) displayed impaired iron storage capacities in the tissue leukocyte compartment, increased levels of labile iron in macrophages, and an accelerated macrophage-mediated iron turnover. While under steady-state conditions, LysM-Cre+/+Fth+/+ and LysM-Cre+/+Fthfl/fl animals showed comparable susceptibility to Salmonella infection, i.v. iron supplementation drastically shortened survival of LysM-Cre+/+Fthfl/fl mice. Mechanistically, these animals displayed increased bacterial burden, which contributed to uncontrolled triggering of NF-κB and inflammasome signaling and development of cytokine storm and death. Importantly, pharmacologic inhibition of the inflammasome and IL-1ß pathways reduced cytokine levels and mortality and partly restored infection control in iron-treated ferritin-deficient mice. These findings uncover incompletely characterized roles of ferritin and cellular iron turnover in myeloid cells in controlling bacterial spread and for modulating NF-κB and inflammasome-mediated cytokine activation, which may be of vital importance in iron-overloaded individuals suffering from severe infections and sepsis.


Asunto(s)
Apoferritinas , Susceptibilidad a Enfermedades/metabolismo , Inflamación , Hierro , Macrófagos , Infecciones por Salmonella , Salmonella typhimurium/inmunología , Animales , Apoferritinas/deficiencia , Apoferritinas/metabolismo , Inmunidad Innata , Inflamasomas/metabolismo , Inflamación/metabolismo , Inflamación/microbiología , Interleucina-1beta/inmunología , Hierro/inmunología , Hierro/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/metabolismo , Transducción de Señal/inmunología
13.
Sci Rep ; 11(1): 2261, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500503

RESUMEN

The diagnosis of COVID-19 relies on the direct detection of SARS-CoV-2 RNA in respiratory specimens by RT-PCR. The pandemic spread of the disease caused an imbalance between demand and supply of materials and reagents needed for diagnostic purposes including swab sets. In a comparative effectiveness study, we conducted serial follow-up swabs in hospitalized laboratory-confirmed COVID-19 patients. We assessed the diagnostic performance of an in-house system developed according to recommendations by the US CDC. In a total of 96 serial swabs, we found significant differences in the accuracy of the different swab systems to generate a positive result in SARS-CoV-2 RT-PCR, ranging from around 50 to 80%. Of note, an in-house swab system was superior to most commercially available sets as reflected by significantly lower Ct values of viral genes. Thus, a simple combination of broadly available materials may enable diagnostic laboratories to bypass global limitations in the supply of swab sets.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/instrumentación , COVID-19/diagnóstico , Equipos Desechables/provisión & distribución , Técnicas de Diagnóstico Molecular/instrumentación , SARS-CoV-2/aislamiento & purificación , Prueba de Ácido Nucleico para COVID-19/métodos , Técnicas de Laboratorio Clínico , Pruebas Diagnósticas de Rutina , Genes Virales , Humanos , Técnicas de Diagnóstico Molecular/métodos , Control de Calidad , ARN Viral/análisis , Reproducibilidad de los Resultados , Asignación de Recursos , Manejo de Especímenes
14.
Semin Cell Dev Biol ; 115: 27-36, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33386235

RESUMEN

The control over iron availability is crucial under homeostatic conditions and even more in the case of an infection. This results from diverse properties of iron: first, iron is an important trace element for the host as well as for the pathogen for various cellular and metabolic processes, second, free iron catalyzes Fenton reaction and is therefore producing reactive oxygen species as a part of the host defense machinery, third, iron exhibits important effects on immune cell function and differentiation and fourth almost every immune activation in turn impacts on iron metabolism and spatio-temporal iron distribution. The central importance of iron in the host and microbe interplay and thus for the course of infections led to diverse strategies to restrict iron for invading pathogens. In this review, we focus on how iron restriction to the pathogen is a powerful innate immune defense mechanism of the host called "nutritional immunity". Important proteins in the iron-host-pathogen interplay will be discussed as well as the influence of iron on the efficacy of innate and adaptive immunity. Recently described processes like ferritinophagy and ferroptosis are further covered in respect to their impact on inflammation and infection control and how they impact on our understanding of the interaction of host and pathogen.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/inmunología , Hierro/metabolismo , Humanos
15.
Haematologica ; 106(12): 3149-3161, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33054105

RESUMEN

Mutations in HFE cause hereditary hemochromatosis type I hallmarked by increased iron absorption, iron accumulation in hepatocytes and iron deficiency in myeloid cells. HFE encodes an MHC-I like molecule, but its function in immune responses to infection remains incompletely understood. Here, we investigated putative roles of Hfe in myeloid cells and hepatocytes, separately, upon infection with Salmonella Typhimurium, an intracellular bacterium with iron-dependent virulence. We found that constitutive and macrophage-specific deletion of Hfe protected infected mice. The propagation of Salmonella in macrophages was reduced due to limited intramacrophage iron availability for bacterial growth and increased expression of the anti-microbial enzyme nitric oxide synthase-2. By contrast, mice with hepatocyte-specific deletion of Hfe succumbed earlier to Salmonella infection because of unrestricted extracellular bacterial replication associated with high iron availability in the serum and impaired expression of essential host defense molecules such as interleukin-6, interferon-γ and nitric oxide synthase-2. Wild-type mice subjected to dietary iron overload phenocopied hepatocyte-specific Hfe deficiency suggesting that increased iron availability in the serum is deleterious in Salmonella infection and underlies impaired host immune responses. Moreover, the macrophage-specific effect is dominant over hepatocyte-specific Hfe-depletion, as Hfe knock-out mice have increased survival despite the higher parenchymal iron load associated with systemic loss of Hfe. We conclude that cell-specific expression of Hfe in hepatocytes and macrophages differentially affects the course of infections with specific pathogens by determining bacterial iron access and the efficacy of anti-microbial immune effector pathways. This may explain the high frequency and evolutionary conservation of human HFE mutations.


Asunto(s)
Hemocromatosis , Infecciones por Salmonella , Animales , Proteína de la Hemocromatosis/genética , Ratones , Ratones Noqueados , Infecciones por Salmonella/genética , Salmonella typhimurium/genética , Serogrupo
16.
Eur Respir J ; 57(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33303539

RESUMEN

BACKGROUND: After the 2002/2003 severe acute respiratory syndrome outbreak, 30% of survivors exhibited persisting structural pulmonary abnormalities. The long-term pulmonary sequelae of coronavirus disease 2019 (COVID-19) are yet unknown, and comprehensive clinical follow-up data are lacking. METHODS: In this prospective, multicentre, observational study, we systematically evaluated the cardiopulmonary damage in subjects recovering from COVID-19 at 60 and 100 days after confirmed diagnosis. We conducted a detailed questionnaire, clinical examination, laboratory testing, lung function analysis, echocardiography and thoracic low-dose computed tomography (CT). RESULTS: Data from 145 COVID-19 patients were evaluated, and 41% of all subjects exhibited persistent symptoms 100 days after COVID-19 onset, with dyspnoea being most frequent (36%). Accordingly, patients still displayed an impaired lung function, with a reduced diffusing capacity in 21% of the cohort being the most prominent finding. Cardiac impairment, including a reduced left ventricular function or signs of pulmonary hypertension, was only present in a minority of subjects. CT scans unveiled persisting lung pathologies in 63% of patients, mainly consisting of bilateral ground-glass opacities and/or reticulation in the lower lung lobes, without radiological signs of pulmonary fibrosis. Sequential follow-up evaluations at 60 and 100 days after COVID-19 onset demonstrated a vast improvement of symptoms and CT abnormalities over time. CONCLUSION: A relevant percentage of post-COVID-19 patients presented with persisting symptoms and lung function impairment along with radiological pulmonary abnormalities >100 days after the diagnosis of COVID-19. However, our results indicate a significant improvement in symptoms and cardiopulmonary status over time.


Asunto(s)
COVID-19 , Fibrosis Pulmonar , Humanos , Pulmón/diagnóstico por imagen , Estudios Prospectivos , SARS-CoV-2
17.
Respir Res ; 21(1): 276, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087116

RESUMEN

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) is frequently associated with hyperinflammation and hyperferritinemia. The latter is related to increased mortality in COVID-19. Still, it is not clear if iron dysmetabolism is mechanistically linked to COVID-19 pathobiology. METHODS: We herein present data from the ongoing prospective, multicentre, observational CovILD cohort study (ClinicalTrials.gov number, NCT04416100), which systematically follows up patients after COVID-19. 109 participants were evaluated 60 days after onset of first COVID-19 symptoms including clinical examination, chest computed tomography and laboratory testing. RESULTS: We investigated subjects with mild to critical COVID-19, of which the majority received hospital treatment. 60 days after disease onset, 30% of subjects still presented with iron deficiency and 9% had anemia, mostly categorized as anemia of inflammation. Anemic patients had increased levels of inflammation markers such as interleukin-6 and C-reactive protein and survived a more severe course of COVID-19. Hyperferritinemia was still present in 38% of all individuals and was more frequent in subjects with preceding severe or critical COVID-19. Analysis of the mRNA expression of peripheral blood mononuclear cells demonstrated a correlation of increased ferritin and cytokine mRNA expression in these patients. Finally, persisting hyperferritinemia was significantly associated with severe lung pathologies in computed tomography scans and a decreased performance status as compared to patients without hyperferritinemia. DISCUSSION: Alterations of iron homeostasis can persist for at least two months after the onset of COVID-19 and are closely associated with non-resolving lung pathologies and impaired physical performance. Determination of serum iron parameters may thus be a easy to access measure to monitor the resolution of COVID-19. TRIAL REGISTRATION: ClinicalTrials.gov number: NCT04416100.


Asunto(s)
Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/metabolismo , Homeostasis , Hierro/metabolismo , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/metabolismo , Neumonía Viral/complicaciones , Neumonía Viral/metabolismo , Adulto , Anciano , Anemia/etiología , Proteína C-Reactiva/análisis , COVID-19 , Estudios de Cohortes , Infecciones por Coronavirus/fisiopatología , Femenino , Ferritinas/sangre , Estudios de Seguimiento , Humanos , Inflamación/etiología , Inflamación/metabolismo , Interleucina-6/sangre , Enfermedades Pulmonares/fisiopatología , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Pandemias , Neumonía Viral/fisiopatología , Estudios Prospectivos , Tomografía Computarizada por Rayos X
18.
Front Immunol ; 11: 594, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411125

RESUMEN

Neutrophils and monocytes encompassing the classical, intermediate, and nonclassical population constitute the majority of circulating myeloid cells in humans and represent the first line of innate immune defense. As such, changes in their relative and absolute amounts serve as sensitive markers of diverse inflammatory conditions. Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system, causing demyelination and axonal loss, affecting various neuron functions and often causing irreversible neurological disability. MS disease course is individually highly heterogeneous but can be classified as progressive (PMS) or relapsing-remitting (RRMS). Each MS course type may be further characterized as active or inactive, depending on the recent disability progression and/or current relapses. Data on specific alterations of the myeloid compartment in association with MS disease course are scarce and conflicting. In the current study, we systematically immunophenotyped blood myeloid leukocytes by flow cytometry in 15 healthy and 65 MS subjects. We found a highly significant expansion of granulocytes, CD15+ neutrophils, and classical and nonclassical monocytes in inactive RRMS (RRMSi) with concomitant shrinkage of the lymphocyte compartment, which did not correlate with biochemical readouts of systemic inflammation. Each of these leukocyte populations and the combined myeloid signature accurately differentiated RRMSi from other MS forms. Additionally, nonclassical monocyte proportions were particularly elevated in RRMSi individuals receiving disease-modifying therapy (DMT), such as natalizumab. Our results suggest that flow cytometry-based myeloid cell immunophenotyping in MS may help to identify RRMSi earlier and facilitate monitoring of DMT response.


Asunto(s)
Biomarcadores/sangre , Monocitos/inmunología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Esclerosis Múltiple Recurrente-Remitente/inmunología , Neutrófilos/inmunología , Adulto , Anciano , Femenino , Citometría de Flujo/métodos , Humanos , Factores Inmunológicos/uso terapéutico , Inmunofenotipificación/métodos , Masculino , Persona de Mediana Edad , Monocitos/efectos de los fármacos , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Natalizumab/uso terapéutico , Neutrófilos/efectos de los fármacos
19.
Eur Heart J ; 41(40): 3949-3959, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32227235

RESUMEN

AIMS: Imbalances of iron metabolism have been linked to the development of atherosclerosis. However, subjects with hereditary haemochromatosis have a lower prevalence of cardiovascular disease. The aim of our study was to understand the underlying mechanisms by combining data from genome-wide association study analyses in humans, CRISPR/Cas9 genome editing, and loss-of-function studies in mice. METHODS AND RESULTS: Our analysis of the Global Lipids Genetics Consortium (GLGC) dataset revealed that single nucleotide polymorphisms (SNPs) in the haemochromatosis gene HFE associate with reduced low-density lipoprotein cholesterol (LDL-C) in human plasma. The LDL-C lowering effect could be phenocopied in dyslipidaemic ApoE-/- mice lacking Hfe, which translated into reduced atherosclerosis burden. Mechanistically, we identified HFE as a negative regulator of LDL receptor expression in hepatocytes. Moreover, we uncovered liver-resident Kupffer cells (KCs) as central players in cholesterol homeostasis as they were found to acquire and transfer LDL-derived cholesterol to hepatocytes in an Abca1-dependent fashion, which is controlled by iron availability. CONCLUSION: Our results disentangle novel regulatory interactions between iron metabolism, KC biology and cholesterol homeostasis which are promising targets for treating dyslipidaemia but also provide a mechanistic explanation for reduced cardiovascular morbidity in subjects with haemochromatosis.


Asunto(s)
Aterosclerosis , Proteína de la Hemocromatosis , Hemocromatosis , Animales , Aterosclerosis/genética , LDL-Colesterol , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Estudio de Asociación del Genoma Completo , Hemocromatosis/genética , Homeostasis , Humanos , Macrófagos del Hígado , Ratones , Receptores de LDL
20.
Nat Commun ; 11(1): 1775, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286299

RESUMEN

The increased incidence of inflammatory bowel disease (IBD) has become a global phenomenon that could be related to adoption of a Western life-style. Westernization of dietary habits is partly characterized by enrichment with the ω-6 polyunsaturated fatty acid (PUFA) arachidonic acid (AA), which entails risk for developing IBD. Glutathione peroxidase 4 (GPX4) protects against lipid peroxidation (LPO) and cell death termed ferroptosis. We report that small intestinal epithelial cells (IECs) in Crohn's disease (CD) exhibit impaired GPX4 activity and signs of LPO. PUFAs and specifically AA trigger a cytokine response of IECs which is restricted by GPX4. While GPX4 does not control AA metabolism, cytokine production is governed by similar mechanisms as ferroptosis. A PUFA-enriched Western diet triggers focal granuloma-like neutrophilic enteritis in mice that lack one allele of Gpx4 in IECs. Our study identifies dietary PUFAs as a trigger of GPX4-restricted mucosal inflammation phenocopying aspects of human CD.


Asunto(s)
Enfermedad de Crohn/metabolismo , Grasas de la Dieta/efectos adversos , Enteritis/metabolismo , Ácidos Grasos Insaturados/metabolismo , Inflamación/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Adulto , Animales , Muerte Celular/genética , Muerte Celular/fisiología , Enfermedad de Crohn/genética , Enteritis/etiología , Enteritis/genética , Ácidos Grasos Insaturados/genética , Femenino , Glutatión Peroxidasa/metabolismo , Humanos , Inflamación/genética , Peroxidación de Lípido/genética , Peroxidación de Lípido/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...