Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Yeast ; 39(4): 247-261, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34791685

RESUMEN

The formation of stress granules (SGs), membrane-less organelles that are composed of mainly messenger ribonucleoprotein assemblies, is the result of a conserved evolutionary strategy to cellular stress. During their formation, which is triggered by robust environmental stress, SGs sequester translationally inactive mRNA molecules, which are either forwarded for further processing elsewhere or stored during a period of stress within SGs. Removal of mRNA molecules from active translation and their sequestration in SGs allows preferential translation of stress response transcripts. By affecting the specificity of mRNA translation, mRNA localization and stability, SGs are involved in the overall cellular reprogramming during periods of environmental stress and viral infection. Over the past two decades, we have learned which processes drive SGs assembly, how their composition varies under stress, and how they co-exist with other subcellular organelles. Yeast as a model has been instrumental in our understanding of SG biology. Despite the specific differences between the SGs of yeast and mammals, yeast have been shown to be a valuable tool to the study of SGs in translation-related stress response. This review summarizes the data surrounding SGs that are formed under different stress conditions in Saccharomyces cerevisiae and other yeast species. It offers a comprehensive and up-to-date view on these still somewhat mysterious entities.


Asunto(s)
Gránulos Citoplasmáticos , Saccharomyces cerevisiae , Animales , Gránulos Citoplasmáticos/fisiología , Mamíferos/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Gránulos de Estrés , Estrés Fisiológico
2.
Int J Mol Sci ; 22(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068231

RESUMEN

Stress granules (SGs) are membrane-less assemblies arising upon various stresses in eukaryotic cells. They sequester mRNAs and proteins from stressful conditions and modulate gene expression to enable cells to resume translation and growth after stress relief. SGs containing the translation initiation factor eIF3a/Rpg1 arise in yeast cells upon robust heat shock (HS) at 46 °C only. We demonstrate that the destabilization of Rpg1 within the PCI domain in the Rpg1-3 variant leads to SGs assembly already at moderate HS at 42 °C. These are bona fide SGs arising upon translation arrest containing mRNAs, which are components of the translation machinery, and associating with P-bodies. HS SGs associate with endoplasmatic reticulum and mitochondria and their contact sites ERMES. Although Rpg1-3-labeled SGs arise at a lower temperature, their disassembly is delayed after HS at 46 °C. Remarkably, the delayed disassembly of HS SGs after the robust HS is reversed by TDP-43, which is a human protein connected with amyotrophic lateral sclerosis. TDP-43 colocalizes with HS SGs in yeast cells and facilitates cell regrowth after the stress relief. Based on our results, we propose yeast HS SGs labeled by Rpg1 and its variants as a novel model system to study functions of TDP-43 in stress granules disassembly.


Asunto(s)
Gránulos Citoplasmáticos/fisiología , Proteínas de Unión al ADN/metabolismo , Factor 3 de Iniciación Eucariótica/química , Respuesta al Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/genética , Retículo Endoplásmico/metabolismo , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Humanos , Mitocondrias/metabolismo , Estabilidad Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
3.
Antioxidants (Basel) ; 10(2)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671669

RESUMEN

Reactive oxygen species (ROS) that exceed the antioxidative capacity of the cell can be harmful and are termed oxidative stress. Increasing evidence suggests that ROS are not exclusively detrimental, but can fulfill important signaling functions. Recently, we have been able to demonstrate that a NADPH oxidase-like enzyme (termed Yno1p) exists in the single-celled organism Saccharomyces cerevisiae. This enzyme resides in the peripheral and perinuclear endoplasmic reticulum and functions in close proximity to the plasma membrane. Its product, hydrogen peroxide, which is also produced by the action of the superoxide dismutase, Sod1p, influences signaling of key regulatory proteins Ras2p and Yck1p/2p. In the present work, we demonstrate that Yno1p-derived H2O2 regulates outputs controlled by three MAP kinase pathways that can share components: the filamentous growth (filamentous growth MAPK (fMAPK)), pheromone response, and osmotic stress response (hyperosmolarity glycerol response, HOG) pathways. A key structural component and regulator in this process is the actin cytoskeleton. The nucleation and stabilization of actin are regulated by Yno1p. Cells lacking YNO1 showed reduced invasive growth, which could be reversed by stimulation of actin nucleation. Additionally, under osmotic stress, the vacuoles of a ∆yno1 strain show an enhanced fragmentation. During pheromone response induced by the addition of alpha-factor, Yno1p is responsible for a burst of ROS. Collectively, these results broaden the roles of ROS to encompass microbial differentiation responses and stress responses controlled by MAPK pathways.

4.
G3 (Bethesda) ; 10(12): 4637-4648, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33093184

RESUMEN

A yeast deletion mutation in the nuclear-encoded gene, AFO1, which codes for a mitochondrial ribosomal protein, led to slow growth on glucose, the inability to grow on glycerol or ethanol, and loss of mitochondrial DNA and respiration. We noticed that afo1- yeast readily obtains secondary mutations that suppress aspects of this phenotype, including its growth defect. We characterized and identified a dominant missense suppressor mutation in the ATP3 gene. Comparing isogenic slowly growing rho-zero and rapidly growing suppressed afo1- strains under carefully controlled fermentation conditions showed that energy charge was not significantly different between strains and was not causal for the observed growth properties. Surprisingly, in a wild-type background, the dominant suppressor allele of ATP3 still allowed respiratory growth but increased the petite frequency. Similarly, a slow-growing respiratory deficient afo1- strain displayed an about twofold increase in spontaneous frequency of point mutations (comparable to the rho-zero strain) while the suppressed strain showed mutation frequency comparable to the respiratory-competent WT strain. We conclude, that phenotypes that result from afo1- are mostly explained by rapidly emerging mutations that compensate for the slow growth that typically follows respiratory deficiency.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , ADN Mitocondrial/genética , Mutación , Tasa de Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Cells ; 9(1)2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936125

RESUMEN

Translationally controlled tumor protein (TCTP) is a multifunctional and highly conserved protein from yeast to humans. Recently, its role in non-selective autophagy has been reported with controversial results in mammalian and human cells. Herein we examine the effect of Mmi1, the yeast ortholog of TCTP, on non-selective autophagy in budding yeast Saccharomyces cerevisiae, a well-established model system to monitor autophagy. We induced autophagy by nitrogen starvation or rapamycin addition and measured autophagy by using the Pho8Δ60 and GFP-Atg8 processing assays in WT, mmi1Δ, and in autophagy-deficient strains atg8Δ or atg1Δ. Our results demonstrate that Mmi1 does not affect basal or nitrogen starvation-induced autophagy. However, an increased rapamycin-induced autophagy is detected in mmi1Δ strain when the cells enter the post-diauxic growth phase, and this phenotype can be rescued by inserted wild-type MMI1 gene. Further, the mmi1Δ cells exhibit significantly lower amounts of reactive oxygen species (ROS) in the post-diauxic growth phase compared to WT cells. In summary, our study suggests that Mmi1 negatively affects rapamycin-induced autophagy in the post-diauxic growth phase and supports the role of Mmi1/TCTP as a negative autophagy regulator in eukaryotic cells.


Asunto(s)
Autofagia , Biomarcadores de Tumor/química , Proteínas de Unión al Calcio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Sirolimus/farmacología , Autofagia/efectos de los fármacos , Glucosa/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Mutación/genética , Nitrógeno/deficiencia , Saccharomyces cerevisiae/efectos de los fármacos , Superóxidos/metabolismo , Proteína Tumoral Controlada Traslacionalmente 1
6.
Curr Genet ; 65(4): 919-940, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30715564

RESUMEN

Cells have elaborated a complex strategy to maintain protein homeostasis under physiological as well as stress conditions with the aim to ensure the smooth functioning of vital processes and producing healthy offspring. Impairment of one of the most important processes in living cells, translation, might have serious consequences including various brain disorders in humans. Here, we describe a variant of the translation initiation factor eIF3a, Rpg1-3, mutated in its PCI domain that displays an attenuated translation efficiency and formation of reversible assemblies at physiological growth conditions. Rpg1-3-GFP assemblies are not sequestered within mother cells only as usual for misfolded-protein aggregates and are freely transmitted from the mother cell into the bud although they are of non-amyloid nature. Their bud-directed transmission and the active movement within the cell area depend on the intact actin cytoskeleton and the related molecular motor Myo2. Mutations in the Rpg1-3 protein render not only eIF3a but, more importantly, also the eIF3 core complex prone to aggregation that is potentiated by the limited availability of Hsp70 and Hsp40 chaperones. Our results open the way to understand mechanisms yeast cells employ to cope with malfunction and aggregation of essential proteins and their complexes.


Asunto(s)
Factor 3 de Iniciación Eucariótica/genética , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Agregado de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Citoesqueleto de Actina/genética , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/genética , Humanos , Mitocondrias , Mutación , Saccharomyces cerevisiae/crecimiento & desarrollo
7.
Wien Med Wochenschr ; 168(11-12): 286-299, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30084091

RESUMEN

This short review article summarizes what is known clinically and biochemically about the seven human NADPH oxidases. Emphasis is put on the connection between mutations in the catalytic and regulatory subunits of Nox2, the phagocyte defense enzyme, with syndromes like chronic granulomatous disease, as well as a number of chronic inflammatory diseases. These arise paradoxically from a lack of reactive oxygen species production needed as second messengers for immune regulation. Both Nox2 and the six other human NADPH oxidases display signaling functions in addition to the functions of these enzymes in specialized biochemical reactions, for instance, synthesis of the hormone thyroxine. NADPH oxidases are also needed by Saccharomyces cerevisiae cells for the regulation of the actin cytoskeleton in times of stress or developmental changes, such as pseudohyphae formation. The article shows that in certain cancer cells Nox4 is also involved in the re-structuring of the actin cytoskeleton, which is required for cell mobility and therefore for metastasis.


Asunto(s)
Células Eucariotas , NADPH Oxidasas , Humanos , NADPH Oxidasa 2 , NADPH Oxidasa 4 , NADPH Oxidasas/fisiología , Especies Reactivas de Oxígeno
8.
FEMS Microbiol Lett ; 364(22)2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29087456

RESUMEN

Phospholipase C (Plc1p) in Saccharomyces cerevisiae is required for normal degradation of repressor Mth1p and expression of the HXT genes encoding cell membrane transporters of glucose. Plc1p is also required for normal localization of glucose transporters to the cell membrane. Consequently, plc1Δ cells display histone hypoacetylation and transcriptional defects due to reduced uptake and metabolism of glucose to acetyl-CoA, a substrate for histone acetyltransferases. In the presence of glucose, Mth1p is phosphorylated by casein kinase I Yck1/2p, ubiquitinated by the SCFGrr1 complex and degraded by the proteasome. Here, we show that while Plc1p does not affect the function of the SCFGrr1 complex or the proteasome, it is required for normal protein level of Yck2p. Since stability of Yck1/2p is regulated by a glucose-dependent mechanism, PLC1 inactivation results in destabilization of Yck1/2p and defect in Mth1p degradation. Based on our results and published data, we propose a model in which plc1Δ mutation causes increased internalization of glucose transporters, decreased transport of glucose into the cells, and consequently decreased stability of Yck1/2p, increased stability of Mth1p and decreased expression of the HXT genes.


Asunto(s)
Quinasa de la Caseína I/química , Quinasa de la Caseína I/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfolipasas de Tipo C/metabolismo , Estabilidad de Enzimas , Proteínas de Transporte de Monosacáridos/genética , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
9.
Cell Death Discov ; 3: 17016, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28386457

RESUMEN

In recent years it turned out that there is not only extensive communication between the nucleus and mitochondria but also between mitochondria and lipid droplets (LDs) as well. We were able to demonstrate that a number of proteins shuttle between LDs and mitochondria and it depends on the metabolic state of the cell on which organelle these proteins are predominantly localized. Responsible for the localization of the particular proteins is a protein domain consisting of two α-helices, which we termed V-domain according to the predicted structure. So far we have detected this domain in the following proteins: mammalian BAX, BCL-XL, TCTP and yeast Mmi1p and Erg6p. According to our experiments there are two functions of this domain: (1) shuttling of proteins to mitochondria in times of stress and apoptosis; (2) clearing the outer mitochondrial membrane from pro- as well as anti-apoptotic proteins by moving them to LDs after the stress ceases. In this way the LDs are used by the cell to modulate stress response.

10.
FEMS Yeast Res ; 16(3)2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26994102

RESUMEN

Live-imaging analysis is performed in many laboratories all over the world. Various tools have been developed to enable protein labeling either in plasmid or genomic context in live yeast cells. Here, we introduce a set of nine integrative modules for the C-terminal gene tagging that combines three fluorescent proteins (FPs)-ymTagBFP, mCherry and yTagRFP-T with three dominant selection markers: geneticin, nourseothricin and hygromycin. In addition, the construction of two episomal modules for Saccharomyces cerevisiae with photostable yTagRFP-T is also referred to. Our cassettes with orange, red and blue FPs can be combined with other fluorescent probes like green fluorescent protein to prepare double- or triple-labeled strains for multicolor live-cell imaging. Primers for PCR amplification of the cassettes were designed in such a way as to be fully compatible with the existing PCR toolbox representing over 50 various integrative modules and also with deletion cassettes either for single or repeated usage to enable a cost-effective and an easy exchange of tags. New modules can also be used for biochemical analysis since antibodies are available for all three fluorescent probes.


Asunto(s)
Genes Reporteros , Genética Microbiana/métodos , Proteínas Luminiscentes/análisis , Biología Molecular/métodos , Imagen Óptica/métodos , Saccharomyces cerevisiae/citología , Coloración y Etiquetado/métodos , Proteínas Luminiscentes/genética , Plásmidos , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Recombinación Genética , Saccharomyces cerevisiae/genética , Selección Genética
11.
PLoS One ; 11(3): e0150616, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26953568

RESUMEN

Protein synthesis is a highly efficient process and is under exacting control. Yet, the actual abundance of translation factors present in translating complexes and how these abundances change during the transit of a ribosome across an mRNA remains unknown. Using analytical ultracentrifugation with fluorescent detection we have determined the stoichiometry of the closed-loop translation factors for translating ribosomes. A variety of pools of translating polysomes and monosomes were identified, each containing different abundances of the closed-loop factors eIF4E, eIF4G, and PAB1 and that of the translational repressor, SBP1. We establish that closed-loop factors eIF4E/eIF4G dissociated both as ribosomes transited polyadenylated mRNA from initiation to elongation and as translation changed from the polysomal to monosomal state prior to cessation of translation. eIF4G was found to particularly dissociate from polyadenylated mRNA as polysomes moved to the monosomal state, suggesting an active role for translational repressors in this process. Consistent with this suggestion, translating complexes generally did not simultaneously contain eIF4E/eIF4G and SBP1, implying mutual exclusivity in such complexes. For substantially deadenylated mRNA, however, a second type of closed-loop structure was identified that contained just eIF4E and eIF4G. More than one eIF4G molecule per polysome appeared to be present in these complexes, supporting the importance of eIF4G interactions with the mRNA independent of PAB1. These latter closed-loop structures, which were particularly stable in polysomes, may be playing specific roles in both normal and disease states for specific mRNA that are deadenylated and/or lacking PAB1. These analyses establish a dynamic snapshot of molecular abundance changes during ribosomal transit across an mRNA in what are likely to be critical targets of regulation.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Complejos Multiproteicos/metabolismo , Poli A , Polirribosomas/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al Selenio/metabolismo
12.
Microb Cell ; 3(5): 206-214, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28357356

RESUMEN

Actin filaments form cortical patches and emanating cables in fermenting cells of Saccharomyces cerevisiae. This pattern has been shown to be depolarized in glucose-depleted cells after formaldehyde fixation and staining with rhodamine-tagged phalloidin. Loss of actin cables in mother cells was remarkable. Here we extend our knowledge on actin in live glucose-depleted cells co-expressing the marker of actin patches (Abp1-RFP) with the marker of actin cables (Abp140-GFP). Glucose depletion resulted in appearance of actin patches also in mother cells. However, even after 80 min of glucose deprivation these cells showed a clear network of actin cables labeled with Abp140-GFP in contrast to previously published data. In live cells with a mitochondrial dysfunction (rho0 cells), glucose depletion resulted in almost immediate appearance of Abp140-GFP foci partially overlapping with Abp1-RFP patches in mother cells. Residual actin cables were clustered in patch-associated bundles. A similar overlapping "patchy" pattern of both actin markers was observed upon treatment of glucose-deprived rho+ cells with FCCP (the inhibitor of oxidative phosphorylation) and upon treatment with formaldehyde. While the formaldehyde-targeted process stays unknown, our results indicate that published data on yeast actin cytoskeleton obtained from glucose-depleted cells after fixation should be considered with caution.

13.
Mol Cell Biol ; 35(22): 3892-908, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26351139

RESUMEN

Stationary-growth-phase Saccharomyces cerevisiae yeast cultures consist of nondividing cells that undergo chronological aging. For their successful survival, the turnover of proteins and organelles, ensured by autophagy and the activation of mitochondria, is performed. Some of these processes are engaged in by the actin cytoskeleton. In S. cerevisiae stationary-phase cells, F actin has been shown to form static aggregates named actin bodies, subsequently cited to be markers of quiescence. Our in vivo analyses revealed that stationary-phase cultures contain cells with dynamic actin filaments, besides the cells with static actin bodies. The cells with dynamic actin displayed active endocytosis and autophagy and well-developed mitochondrial networks. Even more, stationary-phase cell cultures grown under calorie restriction predominantly contained cells with actin cables, confirming that the presence of actin cables is linked to successful adaptation to stationary phase. Cells with actin bodies were inactive in endocytosis and autophagy and displayed aberrations in mitochondrial networks. Notably, cells of the respiratory activity-deficient cox4Δ strain displayed the same mitochondrial aberrations and actin bodies only. Additionally, our results indicate that mitochondrial dysfunction precedes the formation of actin bodies and the appearance of actin bodies corresponds to decreased cell fitness. We conclude that the F-actin status reflects the extent of damage that arises from exponential growth.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Citoesqueleto de Actina/ultraestructura , Actinas/metabolismo , Actinas/ultraestructura , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/ultraestructura
14.
PLoS One ; 10(3): e0122770, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25811606

RESUMEN

Regulation of gene expression on the level of translation and mRNA turnover is widely conserved evolutionarily. We have found that the main mRNA decay enzyme, exoribonuclease Xrn1, accumulates at the plasma membrane-associated eisosomes after glucose exhaustion in a culture of the yeast S. cerevisiae. Eisosomal localization of Xrn1 is not achieved in cells lacking the main component of eisosomes, Pil1, or Sur7, the protein accumulating at the membrane compartment of Can1 (MCC) - the eisosome-organized plasma membrane microdomain. In contrast to the conditions of diauxic shift, when Xrn1 accumulates in processing bodies (P-bodies), or acute heat stress, in which these cytosolic accumulations of Xrn1 associate with eIF3a/Rpg1-containing stress granules, Xrn1 is not accompanied by other mRNA-decay machinery components when it accumulates at eisosomes in post-diauxic cells. It is important that Xrn1 is released from eisosomes after addition of fermentable substrate. We suggest that this spatial segregation of Xrn1 from the rest of the mRNA-decay machinery reflects a general regulatory mechanism, in which the key enzyme is kept separate from the rest of mRNA decay factors in resting cells but ready for immediate use when fermentable nutrients emerge and appropriate metabolism reprogramming is required. In particular, the localization of Xrn1 to the eisosome, together with previously published data, accents the relevance of this plasma membrane-associated compartment as a multipotent regulatory site.


Asunto(s)
Membrana Celular/metabolismo , Exorribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Membrana Celular/genética , Exorribonucleasas/genética , Expresión Génica , Genes Reporteros , Glucosa/metabolismo , Respuesta al Choque Térmico , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
15.
PLoS One ; 8(10): e77791, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24204967

RESUMEN

As we have shown previously, yeast Mmi1 protein translocates from the cytoplasm to the outer surface of mitochondria when vegetatively growing yeast cells are exposed to oxidative stress. Here we analyzed the effect of heat stress on Mmi1 distribution. We performed domain analyses and found that binding of Mmi1 to mitochondria is mediated by its central alpha-helical domain (V-domain) under all conditions tested. In contrast, the isolated N-terminal flexible loop domain of the protein always displays nuclear localization. Using immunoelectron microscopy we confirmed re-location of Mmi1 to the nucleus and showed association of Mmi1 with intact and heat shock-altered mitochondria. We also show here that mmi1Δ mutant strains are resistant to robust heat shock with respect to clonogenicity of the cells. To elucidate this phenotype we found that the cytosolic Mmi1 holoprotein re-localized to the nucleus even in cells heat-shocked at 40°C. Upon robust heat shock at 46°C, Mmi1 partly co-localized with the proteasome marker Rpn1 in the nuclear region as well as with the cytoplasmic stress granules defined by Rpg1 (eIF3a). We co-localized Mmi1 also with Bre5, Ubp3 and Cdc48 which are involved in the protein de-ubiquitination machinery, protecting protein substrates from proteasomal degradation. A comparison of proteolytic activities of wild type and mmi1Δ cells revealed that Mmi1 appears to be an inhibitor of the proteasome. We conclude that one of the physiological functions of the multifunctional protein module, Mmi1, is likely in regulating degradation and/or protection of proteins thereby indirectly regulating the pathways leading to cell death in stressed cells.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Gránulos Citoplasmáticos/metabolismo , Endopeptidasas/metabolismo , Respuesta al Choque Térmico , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Unión al Calcio , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Endopeptidasas/genética , Calor , Microscopía Electrónica , Microscopía Fluorescente , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Proteína que Contiene Valosina
16.
PLoS One ; 8(2): e57083, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23451152

RESUMEN

In response to severe environmental stresses eukaryotic cells shut down translation and accumulate components of the translational machinery in stress granules (SGs). Since they contain mainly mRNA, translation initiation factors and 40S ribosomal subunits, they have been referred to as dominant accumulations of stalled translation preinitiation complexes. Here we present evidence that the robust heat shock-induced SGs of S. cerevisiae also contain translation elongation factors eEF3 (Yef3p) and eEF1Bγ2 (Tef4p) as well as translation termination factors eRF1 (Sup45p) and eRF3 (Sup35p). Despite the presence of the yeast prion protein Sup35 in heat shock-induced SGs, we found out that its prion-like domain is not involved in the SGs assembly. Factors eEF3, eEF1Bγ2 and eRF1 were accumulated and co-localized with Dcp2 foci even upon a milder heat shock at 42°C independently of P-bodies scaffolding proteins. We also show that eEF3 accumulations at 42°C determine sites of the genuine SGs assembly at 46°C. We suggest that identification of translation elongation and termination factors in SGs might help to understand the mechanism of the eIF2α factor phosphorylation-independent repression of translation and SGs assembly.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Respuesta al Choque Térmico , Factores de Elongación de Péptidos/metabolismo , Factores de Terminación de Péptidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Factores de Elongación de Péptidos/química , Factores de Terminación de Péptidos/química , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Estrés Fisiológico
17.
Genetics ; 193(3): 829-51, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23335340

RESUMEN

There is increasing evidence that certain Vacuolar protein sorting (Vps) proteins, factors that mediate vesicular protein trafficking, have additional roles in regulating transcription factors at the endosome. We found that yeast mutants lacking the phosphatidylinositol 3-phosphate [PI(3)P] kinase Vps34 or its associated protein kinase Vps15 display multiple phenotypes indicating impaired transcription elongation. These phenotypes include reduced mRNA production from long or G+C-rich coding sequences (CDS) without affecting the associated GAL1 promoter activity, and a reduced rate of RNA polymerase II (Pol II) progression through lacZ CDS in vivo. Consistent with reported genetic interactions with mutations affecting the histone acetyltransferase complex NuA4, vps15Δ and vps34Δ mutations reduce NuA4 occupancy in certain transcribed CDS. vps15Δ and vps34Δ mutants also exhibit impaired localization of the induced GAL1 gene to the nuclear periphery. We found unexpectedly that, similar to known transcription elongation factors, these and several other Vps factors can be cross-linked to the CDS of genes induced by Gcn4 or Gal4 in a manner dependent on transcriptional induction and stimulated by Cdk7/Kin28-dependent phosphorylation of the Pol II C-terminal domain (CTD). We also observed colocalization of a fraction of Vps15-GFP and Vps34-GFP with nuclear pores at nucleus-vacuole (NV) junctions in live cells. These findings suggest that Vps factors enhance the efficiency of transcription elongation in a manner involving their physical proximity to nuclear pores and transcribed chromatin.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Elongación de la Transcripción Genética , Proteína de Clasificación Vacuolar VPS15/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Núcleo Celular/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/genética , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Secuencia Rica en GC , Galactoquinasa/genética , Galactoquinasa/metabolismo , Eliminación de Gen , Histona Acetiltransferasas/metabolismo , Poro Nuclear/metabolismo , Fenotipo , Fosforilación , Regiones Promotoras Genéticas , Transporte de Proteínas , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína de Clasificación Vacuolar VPS15/genética , Vacuolas/metabolismo
18.
Traffic ; 14(2): 176-93, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23121014

RESUMEN

The protein Isw1 of Saccharomyces cerevisiae is an imitation-switch chromatin-remodeling factor. We studied the mechanisms of its nuclear import and found that the nuclear localization signal (NLS) mediating the transport of Isw1 into the nucleus is located at the end of the C-terminus of the protein (aa1079-1105). We show that it is an atypical bipartite signal with an unconventional linker of 19 aa (KRIR X(19) KKAK) and the only nuclear targeting signal within the Isw1 molecule. The efficiency of Isw1 nuclear import was found to be modulated by changes to the amino acid composition in the vicinity of the KRIR motif, but not by the linker length. Live-cell imaging of various karyopherin mutants and in vitro binding assays of Isw1NLS to importin-α revealed that the nuclear translocation of Isw1 is mediated by the classical import pathway. Analogous motifs to Isw1NLS are highly conserved in Isw1 homologues of other yeast species, and putative bipartite cNLS were identified in silico at the end of the C-termini of imitation switch (ISWI) proteins from higher eukaryotes. We suggest that the C-termini of the ISWI family proteins play an important role in their nuclear import.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Señales de Localización Nuclear , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular/genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencias de Aminoácidos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Mutación , Señales de Localización Nuclear/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
19.
Proc Natl Acad Sci U S A ; 109(22): 8658-63, 2012 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-22586098

RESUMEN

The large protein superfamily of NADPH oxidases (NOX enzymes) is found in members of all eukaryotic kingdoms: animals, plants, fungi, and protists. The physiological functions of these NOX enzymes range from defense to specialized oxidative biosynthesis and to signaling. In filamentous fungi, NOX enzymes are involved in signaling cell differentiation, in particular in the formation of fruiting bodies. On the basis of bioinformatics analysis, until now it was believed that the genomes of unicellular fungi like Saccharomyces cerevisiae and Schizosaccharomyces pombe do not harbor genes coding for NOX enzymes. Nevertheless, the genome of S. cerevisiae contains nine ORFs showing sequence similarity to the catalytic subunits of mammalian NOX enzymes, only some of which have been functionally assigned as ferric reductases involved in iron ion transport. Here we show that one of the nine ORFs (YGL160W, AIM14) encodes a genuine NADPH oxidase, which is located in the endoplasmic reticulum (ER) and produces superoxide in a NADPH-dependent fashion. We renamed this ORF YNO1 (yeast NADPH oxidase 1). Overexpression of YNO1 causes YCA1-dependent apoptosis, whereas deletion of the gene makes cells less sensitive to apoptotic stimuli. Several independent lines of evidence point to regulation of the actin cytoskeleton by reactive oxygen species (ROS) produced by Yno1p.


Asunto(s)
Actinas/metabolismo , Apoptosis , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Caspasas/genética , Caspasas/metabolismo , Citoesqueleto/metabolismo , Retículo Endoplásmico/enzimología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Microscopía de Contraste de Fase , Datos de Secuencia Molecular , Mutación , NADPH Oxidasas/clasificación , NADPH Oxidasas/genética , Sistemas de Lectura Abierta/genética , Filogenia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Superóxidos/metabolismo
20.
Electromagn Biol Med ; 28(2): 223-32, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19811404

RESUMEN

Fröhlich postulated coherent polar oscillations as a fundamental biophysical property of biological systems. Recently, Pelling et al. (2004, 2005) detected mechanical vibrations of yeast cell membrane with atomic force microscope (AFM) and analyzed by Fourier analysis in the frequency range 0.5-2 kHz with amplitudes of the order of 1 nm. This article describes the measurement of electric activity of yeast cells in the acoustic frequency range and of mechanical vibrations of cell membrane. Spectrum analyzer and electrically and electromagnetically screened box with point sensor and amplifiers fed by batteries were used for measurement of synchronized and non synchronized tubulin mutants of yeast cells. We show that the electric activity of synchronized cells in the M phase is greater that of non synchronized cells. That corresponds to the findings of Pohl et al. (1981). Obtained results of measurement of cell electric activity are in good agreement with AFM findings.


Asunto(s)
Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Fenómenos Electromagnéticos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de la radiación , Vibración , Fenómenos Biomecánicos , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA