Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 49(4): 3167-3175, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35076851

RESUMEN

BACKGROUND: Stem cell therapy is developing as a valuable therapeutic trend for heart diseases. Most recent studies are aimed to find the most appropriate types of stem cells for the treatment of myocardial infarction (MI). The animal models have shown that bone marrow-derived mesenchymal stem cells (BMSCs) are a possible, safe, and efficient type of stem cell used in MI. The previous study demonstrated that 5-Azacytidine (5-Aza) could promote cardiac differentiation in stem cells. METHODS: This study used 5-Aza to induce cardiomyocyte differentiation in BMSCs both in static and microfluidic cell culture systems. For this purpose, we investigated the differentiation by using real-time PCR and Immunocytochemistry (ICC) Analysis. RESULTS: Our results showed that 5-Aza could cause to express cardiac markers in BMSCs as indicated by real-time PCR and immunocytochemistry (ICC). However, BMSCs are exposed to both 5-Aza and shear stress, and their synergistic effects could significantly induce cardiac gene expressions in BMSCs. This level of gene expression was observed neither in 5-Aza nor in shear stress groups only. CONCLUSIONS: These results demonstrate that when BMSCs expose to 5-Aza as well as mechanical cues such as shear stress, the cardiac gene expression can be increased dramatically.


Asunto(s)
Células Madre Mesenquimatosas , Infarto del Miocardio , Animales , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo
2.
Life Sci ; 280: 119728, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34144057

RESUMEN

AIMS: Progenitor cells-based regenerative strategy has shown promise to repair cartilage, an avascular tissue in which cells experience hypoxia. Hypoxia is known to improve the early chondrogenic differentiation of stem cells. Therefore, this study aimed to determine whether hypoxia preconditioning could be used to enhance the regenerative potential of the combination of buccal fat pad stem cells (BFPSCs) and bilayer chitosan-based hydrogel scaffold for articular cartilage repair. MATERIALS AND METHODS: Human BFPSCs were seeded on the bilayer chitosan-based hydrogel scaffolds in the culture medium. The viability and proliferation of cells on the scaffolds were monitored using scanning electron microscopy (SEM), MTT assay, and DAPI staining. Hypoxia preconditioned BFPSCs-seeded scaffolds were transplanted into rabbit articular cartilage knee defects for 12 weeks. The newly formed tissue was evaluated by cartilage-specific immunohistological analysis and histological staining. KEY FINDINGS: It was found that the chondrogenic differentiation and osteochondral conjunction in articular cartilage defect via BFPSCs-seeded bilayer scaffolds was enhanced by hypoxic preconditioning compared to a normoxic environment. SIGNIFICANCE: Based on our study, the integrity with subchondral bone in osteochondral defect was enhanced by BFPSCs on bilayer scaffold. Thus, this study provides evidence on the design of preconditioned cell-seeded bilayer hydrogels for articular cartilage regeneration.


Asunto(s)
Cartílago Articular/citología , Quitosano/química , Oxígeno/metabolismo , Trasplante de Células Madre , Células Madre/citología , Andamios del Tejido/química , Animales , Cartílago Articular/fisiología , Hipoxia de la Célula , Células Cultivadas , Condrogénesis , Humanos , Masculino , Conejos , Células Madre/metabolismo , Ingeniería de Tejidos/métodos
3.
Adv Exp Med Biol ; 1347: 83-113, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33931833

RESUMEN

PURPOSE: This systematic review focus on the application of bilayer scaffolds as an engaging structure for the engineering of multilayered tissues, including vascular and osteochondral tissues, skin, nerve, and urinary bladder. This article provides a concise literature review of different types of bilayer scaffolds to understand their efficacy in targeted tissue engineering. METHODS: To this aim, electronic search in the English language was performed in PMC, NBCI, and PubMed from April 2008 to December 2019 based on the PRISMA guidelines. Animal studies, including the "bilayer scaffold" and at least one of the following items were examined: osteochondral tissue, bone, skin, neural tissue, urinary bladder, vascular system. The articles which didn't include "tissue engineering" and just in vitro studies were excluded. RESULTS: Totally, 600 articles were evaluated; related articles were 145, and 35 full-text English articles met all the criteria. Fifteen articles in soft tissue engineering and twenty items in hard tissue engineering were the results of this exploration. Based on selected papers, it was revealed that the bilayer scaffolds were used in the regeneration of the multilayered tissues. The highest multilayered tissue regeneration has been achieved when bilayer scaffolds were used with mesenchymal stem cells and differentiation medium before implanting. Among the studies being reported in this review, bone marrow mesenchymal stem cells are the most studied mesenchymal stem cells. Among different kinds of multilayer tissue, the bilayer scaffold has been most used in osteochondral tissue engineering in which collagen and PLGA have been the most frequently used biomaterials. After osteochondral tissue engineering, bilayer scaffolds were widely used in skin tissue engineering. CONCLUSION: The current review aimed to manifest the researcher and surgeons to use a more sophisticated bilayer scaffold in combinations of appropriate stem cells, and different can improve multilayer tissue regeneration. This systematic review can pave a way to design a suitable bilayer scaffold for a specific target tissue and conjunction with proper stem cells.


Asunto(s)
Células Madre Mesenquimatosas , Ingeniería de Tejidos , Animales , Diferenciación Celular , Medicina Regenerativa , Andamios del Tejido
4.
Cell Tissue Res ; 384(2): 403-421, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33433691

RESUMEN

Production of a 3D bone construct with high-yield differentiated cells using an appropriate cell source provides a reliable strategy for different purposes such as therapeutic screening of the drugs. Although adult stem cells can be a good source, their application is limited due to invasive procedure of their isolation and low yield of differentiation. Patient-specific human-induced pluripotent stem cells (hiPSCs) can be an alternative due to their long-term self-renewal capacity and pluripotency after several passages, resolving the requirement of a large number of progenitor cells. In this study, a new biphasic 3D-printed collagen-coated HA/ß-TCP scaffold was fabricated to provide a 3D environment for the cells. The fabricated scaffolds were characterized by the 3D laser scanning digital microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and mechanical test. Then, the osteogenesis potential of the hiPSC-seeded scaffolds was investigated compared to the buccal fat pad stem cell (BFPSC)-seeded scaffolds through in vitro and in vivo studies. In vitro results demonstrated up-regulated expressions of osteogenesis-related genes of RUNX2, ALP, BMP2, and COL1 compared to the BFPSC-seeded scaffolds. In vivo results on calvarial defects in the rats confirmed a higher bone formation in the hiPSC-seeded scaffolds compared to the BFPSC-seeded groups. The immunofluorescence assay also showed higher expression levels of collagen I and osteocalcin proteins in the hiPSC-seeded scaffolds. It can be concluded that using the hiPSC-seeded scaffolds can lead to a high yield of osteogenesis, and the hiPSCs can be used as a superior stem cell source compared to BFPSCs for bone-like construct bioengineering.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Células Madre Pluripotentes Inducidas/metabolismo , Osteogénesis/fisiología , Impresión Tridimensional/normas , Andamios del Tejido/normas , Tejido Adiposo/fisiopatología , Animales , Diferenciación Celular , Proliferación Celular , Humanos , Masculino , Ratas , Ratas Wistar
5.
Avicenna J Phytomed ; 3(4): 329-40, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25050290

RESUMEN

OBJECTIVE: It is generally agreed that most of the phenomena observed during brain ischemia and reperfusion can be explained by the damage to membrane structure. Oxidative stress is resulted in an imbalance between high consumption of oxygen and low levels of endogenous antioxidants. It is known that gallic acid (GA) is a strong antioxidant. The present study was carried out to evaluate the effect of GA on ischemia/reperfusion (I/R)-induced brain injury in rats. MATERIALS AND METHODS: Wistar adult male rats weighing 200-250 g were divided into six groups as sham operated (Sh), ischemia/reperfusion (I/R) received normal saline (I+Veh), I/R groups treated with gallic acid (I+GA, 50, 100, or 200 mg/kg, orally, respectively), or with 100 mg /kg phenytoin (I+Phen). The global cerebral I/R injury was induced by occluding bilateral common carotid arteries (BCCA) for 20 min, followed by 5 days reperfusion in adult male rats. RESULTS: It was found that administration of 100 mg/kg GA for 5 days before and 5 days after I/R induction reversed gait performance, sensorimotor disorders (p<0.01), and hypoalgesia (p<0.001) while dose of 50 mg/kg increased passive avoidance memory significantly (p<0.05). CONCLUSION: Our findings clearly demonstrate that GA has beneficial effects on behavioral impairments after brain injury induced by I/R. The results of this study show that GA pretreatment ameliorates cerebral ischemia/reperfusion injury and enhances the antioxidant defense against BCCA occlusion-induced I/R in rats, so it exhibits cerebroprotective property.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...