Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 14(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35740500

RESUMEN

Due to their crucial role in tumor immunity, NK cells have quickly became a prime target for immunotherapies, with the adoptive transfer of NK cells and the use of NK cell engagers quickly moving to the clinical stage. On the other hand, only a few studies have focused on small molecule drugs capable of unleashing NK cells against cancer. In this context, repurposing small molecules is an attractive strategy to identify new immunotherapies from already approved drugs. Here, we developed a new platform to screen small molecule compounds based on a high-throughput luciferase-release cytotoxicity assay. We tested 1200 FDA approved drugs from the Prestwick Chemical Library, to identify compounds that increase NK cells' cytotoxic potential. We found that the antibiotic colistin sulfate increased the cytotoxicity of human NK cells towards cancer cells. The effect of colistin was short lived and was not observed when NK cells were pretreated with the drug, showing how NK cell activity was potentiated only when the compound was present at the time of recognition of cancer cells. Further studies are needed to uncover the mechanism of action and the pre-clinical efficacy of colistin sulfate in mouse cancer models.

2.
Sci Adv ; 8(15): eabj3286, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35417234

RESUMEN

Trogocytosis modulates immune responses, with still unclear underlying molecular mechanisms. Using leukemia mouse models, we found that lymphocytes perform trogocytosis at high rates with tumor cells. While performing trogocytosis, both Natural Killer (NK) and CD8+ T cells acquire the checkpoint receptor PD-1 from leukemia cells. In vitro and in vivo investigation revealed that PD-1 on the surface of NK cells, rather than being endogenously expressed, was derived entirely from leukemia cells in a SLAM receptor-dependent fashion. PD-1 acquired via trogocytosis actively suppressed NK cell antitumor immunity. PD-1 trogocytosis was corroborated in patients with clonal plasma cell disorders, where NK cells that stained for PD-1 also stained for tumor cell markers. Our results, in addition to shedding light on a previously unappreciated mechanism underlying the presence of PD-1 on NK and cytotoxic T cells, reveal the immunoregulatory effect of membrane transfer occurring when immune cells contact tumor cells.


Asunto(s)
Leucemia , Neoplasias , Animales , Linfocitos T CD8-positivos , Humanos , Células Asesinas Naturales , Leucemia/metabolismo , Ratones , Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo
3.
Adv Mater ; 31(7): e1806214, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30589121

RESUMEN

Cell behavior is highly dependent upon microenvironment. Thus, to identify drugs targeting metastatic cancer, screens need to be performed in tissue mimetic substrates that allow cell invasion and matrix remodeling. A novel biomimetic 3D hydrogel platform that enables quantitative analysis of cell invasion and viability at the individual cell level is developed using automated data acquisition methods with an invasive lung disease (lymphangioleiomyomatosis, LAM) characterized by hyperactive mammalian target of rapamycin complex 1 (mTORC1) signaling as a model. To test the lung-mimetic hydrogel platform, a kinase inhibitor screen is performed using tuberous sclerosis complex 2 (TSC2) hypomorphic cells, identifying Cdk2 inhibition as a putative LAM therapeutic. The 3D hydrogels mimic the native niche, enable multiple modes of invasion, and delineate phenotypic differences between healthy and diseased cells, all of which are critical to effective drug screens of highly invasive diseases including lung cancer.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos/instrumentación , Hidrogeles , Neoplasias Pulmonares/tratamiento farmacológico , Modelos Biológicos , Animales , Antineoplásicos/farmacología , Automatización de Laboratorios , Materiales Biomiméticos , Movimiento Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ensayo de Materiales , Fosfotransferasas/antagonistas & inhibidores , Ratas , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
4.
Transl Oncol ; 11(4): 988-998, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29940414

RESUMEN

Anthracyclines, such as doxorubicin, are used as first-line chemotherapeutics, usually in combination therapies, for the treatment of advanced breast cancer. While these drugs have been successful therapeutic options, their use is limited due to serious drug related toxicities and acquired tumor resistance. Uncovering the molecular mechanisms that mediate doxorubicin's cytotoxic effect will lead to the identification of novel more efficacious combination therapies and allow for reduced doses of doxorubicin to be administered while maintaining efficacy. In our study, we demonstrate that activating transcription factor (ATF) 3 expression was upregulated by doxorubicin treatment in a representative panel of human breast cancer cell lines MCF7 and MDA-MB-231. We have also shown that doxorubicin treatment can induce ATF3 expression in ex vivo human breast and ovarian tumor samples. The upregulation of ATF3 in the cell lines was regulated by multiple cellular mechanisms including the activation of JNK and ATM signaling pathways. Importantly, loss of ATF3 expression resulted in reduced sensitivity to doxorubicin treatment in mouse embryonic fibroblasts. Through a 1200 FDA-approved compound library screen, we identified a number of agents whose cytotoxicity is dependent on ATF3 expression that also enhanced doxorubicin induced cytotoxicity. For example, the combination of the HDAC inhibitor vorinostat or the nucleoside analogue trifluridine could synergistically enhance doxorubicin cytotoxicity in the MCF7 cell line. Synergy in cell lines with the combination of ATF3 inducers and patients with elevated basal levels of ATF3 shows enhanced response to chemotherapy. Taken together, our results demonstrate a role for ATF3 in mediating doxorubicin cytotoxicity and provide rationale for the combination of ATF3-inducing agents with doxorubicin as a novel therapeutic approach.

5.
Neoplasia ; 18(9): 525-35, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27659012

RESUMEN

Non-small cell lung carcinoma (NSCLC) is the most common cause of cancer deaths, with platin-based combination chemotherapy the most efficacious therapies. Gains in overall survival are modest, highlighting the need for novel therapeutic approaches including the development of next-generation platin combination regimens. The goal of this study was to identify novel regulators of platin-induced cytotoxicity as potential therapeutic targets to further enhance platin cytotoxicity. Employing RNA-seq transcriptome analysis comparing two parental NSCLC cell lines Calu6 and H23 to their cisplatin-resistant sublines, Calu6cisR1 and H23cisR1, activating transcription factor 3 (ATF3) was robustly induced in cisplatin-treated parental sensitive cell lines but not their resistant sublines, and in three of six tumors evaluated, but not in their corresponding normal adjacent lung tissue (0/6). Cisplatin-induced JNK activation was a key regulator of this ATF3 induction. Interestingly, in both resistant sublines, this JNK induction was abrogated, and the expression of an activated JNK construct in these cells enhanced both cisplatin-induced cytotoxicity and ATF3 induction. An FDA-approved drug compound screen was employed to identify enhancers of cisplatin cytotoxicity that were dependent on ATF3 gene expression. Vorinostat, a histone deacetylase inhibitor, was identified in this screen and demonstrated synergistic cytotoxicity with cisplatin in both the parental Calu6 and H23 cell lines and importantly in their resistant sublines as well that was dependent on ATF3 expression. Thus, we have identified ATF3 as an important regulator of cisplatin cytotoxicity and that ATF3 inducers in combination with platins are a potential novel therapeutic approach for NSCLC.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Cisplatino/farmacología , Neoplasias Pulmonares/metabolismo , Factor de Transcripción Activador 3/genética , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Daño del ADN , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias Pulmonares/genética , Ratones
6.
PLoS One ; 11(3): e0150567, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26962872

RESUMEN

Blockade of epidermal growth factor receptor (EGFR) activity has been a primary therapeutic target for non-small cell lung cancers (NSCLC). As patients with wild-type EGFR have demonstrated only modest benefit from EGFR tyrosine kinase inhibitors (TKIs), there is a need for additional therapeutic approaches in patients with wild-type EGFR. As a key component of downstream integrin signalling and known receptor cross-talk with EGFR, we hypothesized that targeting focal adhesion kinase (FAK) activity, which has also been shown to correlate with aggressive stage in NSCLC, would lead to enhanced activity of EGFR TKIs. As such, EGFR TKI-resistant NSCLC cells (A549, H1299, H1975) were treated with the EGFR TKI erlotinib and FAK inhibitors (PF-573,228 or PF-562,271) both as single agents and in combination. We determined cell viability, apoptosis and 3-dimensional growth in vitro and assessed tumor growth in vivo. Treatment of EGFR TKI-resistant NSCLC cells with FAK inhibitor alone effectively inhibited cell viability in all cell lines tested; however, its use in combination with the EGFR TKI erlotinib was more effective at reducing cell viability than either treatment alone when tested in both 2- and 3-dimensional assays in vitro, with enhanced benefit seen in A549 cells. This increased efficacy may be due in part to the observed inhibition of Akt phosphorylation when the drugs were used in combination, where again A549 cells demonstrated the most inhibition following treatment with the drug combination. Combining erlotinib with FAK inhibitor was also potent in vivo as evidenced by reduced tumor growth in the A549 mouse xenograft model. We further ascertained that the enhanced sensitivity was irrespective of the LKB1 mutational status. In summary, we demonstrate the effectiveness of combining erlotinib and FAK inhibitors for use in known EGFR wild-type, EGFR TKI resistant cells, with the potential that a subset of cell types, which includes A549, could be particularly sensitive to this combination treatment. As such, further evaluation of this combination therapy is warranted and could prove to be an effective therapeutic approach for patients with inherent EGFR TKI-resistant NSCLC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/farmacología , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA