RESUMEN
Background: TP53 mutations are associated with an adverse prognosis in acute myeloid leukemia (AML) and higher-risk myelodysplastic syndromes (HR-MDS). However, the integrated genetic, epigenetic, and immunologic landscape of TP53-mutated AML/HR-MDS is not well defined. Objectives: To define the genetic, epigenetic, and immunologic landscape of TP53-mutant and TP53 wild-type AML and HR-MDS patients. Design: Post hoc analysis of TP53-mutant and TP53 wild-type patients treated on the randomized FUSION trial with azacitidine ± the anti-PD-L1 antibody durvalumab. Methods: We performed extensive molecular, epigenetic, and immunologic assays on a well-annotated clinical trial dataset of 61 patients with TP53-mutated disease (37 AML, 24 MDS) and 144 TP53 wild-type (89 AML, 55 MDS) patients, all of whom received azacitidine-based therapy. A 38 gene-targeted myeloid mutation analysis from screening bone marrow (BM) was performed. DNA methylation arrays, immunophenotyping and immune checkpoint expression by flow cytometry, and gene expression profiles by bulk RNA sequencing were assessed at baseline and serially during the trial. Results: Global DNA methylation from peripheral blood was independent of TP53 mutation and allelic status. AZA therapy led to a statistically significant decrease in global DNA methylation scores independent of TP53 mutation status. In BM from TP53-mutant patients, we found both a higher T-cell population and upregulation of inhibitory immune checkpoint proteins such as PD-L1 compared to TP53 wild-type. RNA sequencing analyses revealed higher expression of the myeloid immune checkpoint gene LILRB3 in TP53-mutant samples suggesting a novel therapeutic target. Conclusion: This integrated analysis of the genetic, epigenetic, and immunophenotypic landscape of TP53 mutant AML/HR-MDS suggests that differences in the immune landscape resulting in an immunosuppressive microenvironment rather than epigenetic differences contribute to the poor prognosis of TP53-mutant AML/HR-MDS with mono- or multihit TP53 mutation status. Trial registration: FUSION trial (NCT02775903).
Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Azacitidina , Pronóstico , Antimetabolitos Antineoplásicos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inducido químicamente , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Evidence suggests that combining immunotherapy with hypomethylating agents may enhance antitumor activity. This phase 2 study investigated the activity and safety of durvalumab, a programmed death-ligand 1 (PD-L1) inhibitor, combined with azacitidine for patients aged ≥65 years with acute myeloid leukemia (AML), including analyses to identify biomarkers of treatment response. Patients were randomized to first-line therapy with azacitidine 75 mg/m2 on days 1 through 7 with (Arm A, n = 64) or without (Arm B, n = 65) durvalumab 1500 mg on day 1 every 4 weeks. Overall response rate (complete response [CR] + CR with incomplete blood recovery) was similar in both arms (Arm A, 31.3%; Arm B, 35.4%), as were overall survival (Arm A, 13.0 months; Arm B, 14.4 months) and duration of response (Arm A, 24.6 weeks; Arm B, 51.7 weeks; P = .0765). No new safety signals emerged with combination treatment. The most frequently reported treatment-emergent adverse events were constipation (Arm A, 57.8%; Arm B, 53.2%) and thrombocytopenia (Arm A, 42.2%; Arm B, 45.2%). DNA methylation, mutational status, and PD-L1 expression were not associated with response to treatment. In this study, first-line combination therapy with durvalumab and azacitidine in older patients with AML was feasible but did not improve clinical efficacy compared with azacitidine alone. ClinicalTrials.gov: NCT02775903.
Asunto(s)
Azacitidina , Leucemia Mieloide Aguda , Anciano , Anticuerpos Monoclonales/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Azacitidina/efectos adversos , Humanos , Leucemia Mieloide Aguda/patologíaRESUMEN
Azacitidine-mediated hypomethylation promotes tumor cell immune recognition but may increase the expression of inhibitory immune checkpoint molecules. We conducted the first randomized phase 2 study of azacitidine plus the immune checkpoint inhibitor durvalumab vs azacitidine monotherapy as first-line treatment for higher-risk myelodysplastic syndromes (HR-MDS). In all, 84 patients received 75 mg/m2 subcutaneous azacitidine (days 1-7 every 4 weeks) combined with 1500 mg intravenous durvalumab on day 1 every 4 weeks (Arm A) for at least 6 cycles or 75 mg/m² subcutaneous azacitidine alone (days 1-7 every 4 weeks) for at least 6 cycles (Arm B). After a median follow-up of 15.25 months, 8 patients in Arm A and 6 in Arm B remained on treatment. Patients in Arm A received a median of 7.9 treatment cycles and those in Arm B received a median of 7.0 treatment cycles with 73.7% and 65.9%, respectively, completing ≥4 cycles. The overall response rate (primary end point) was 61.9% in Arm A (26 of 42) and 47.6% in Arm B (20 of 42; P = .18), and median overall survival was 11.6 months (95% confidence interval, 9.5 months to not evaluable) vs 16.7 months (95% confidence interval, 9.8-23.5 months; P = .74). Durvalumab-related adverse events (AEs) were reported by 71.1% of patients; azacitidine-related AEs were reported by 82% (Arm A) and 81% (Arm B). Grade 3 or 4 hematologic AEs were reported in 89.5% (Arm A) vs 68.3% (Arm B) of patients. Patients with TP53 mutations tended to have a worse response than patients without these mutations. Azacitidine increased programmed cell death ligand 1 (PD-L1 [CD274]) surface expression on bone marrow granulocytes and monocytes, but not blasts, in both arms. In summary, combining azacitidine with durvalumab in patients with HR-MDS was feasible but with more toxicities and without significant improvement in clinical outcomes over azacitidine alone. This trial was registered at www.clinicaltrials.gov as #NCT02775903.