Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Environ Res ; 96(8): e11093, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39129319

RESUMEN

A study was conducted on 31 surface sediments located in different sectors of the Egyptian Mediterranean coast. The sediments were analyzed for their pollution levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). The sediments were collected from various depths in harbors, coastal lakes, bays, and lagoons, covering the southeastern Mediterranean of the Nile Delta region. The study aimed at determining the distribution, origin, and potential ecological impact of OCP and PCB pollutants. The researchers used the SRM method of GC-MS/MS to measure the concentration of 18 PCBs and 16 OCPs residues. The study found that the total concentration of OCPs in the samples ranged from 3.091 to 20.512 ng/g, with a mean of 8.749 ± 3.677 ng/g. The total concentration of PCB residues ranged from 2.926 to 20.77 ng/g, with a mean of 5.68 ± 3.282 ng/g. The concentration of DDTs exceeded the effect range low (ERL) (1.00) and threshold effect level (TEL) (1.19) in several stations, but it was still below the effect range median (ERM) (7.00) and the probable effect level (PEL) (4.77). This indicates a low ecological risk. The principal component analysis (PCA) was also conducted to determine the sources of all pollutants in the sediment. The PCA showed significant correlations between the concentrations of Gama-HCH and Beta-HCH (0.741), suggesting similar sources. PRACTITIONER POINTS: OCPs and PCBs residues were analyzed in the sediment of the southeastern Mediterranean. The concentration, existence, and causes of OCPs and PCBs were investigated. OCPs and PCBs ecological risk and ecotoxicological calculation were investigated in detail. Cluster analysis, PCA, and correlation coefficient were also investigated.


Asunto(s)
Sedimentos Geológicos , Hidrocarburos Clorados , Plaguicidas , Bifenilos Policlorados , Contaminantes Químicos del Agua , Bifenilos Policlorados/análisis , Hidrocarburos Clorados/análisis , Sedimentos Geológicos/química , Egipto , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Monitoreo del Ambiente , Mar Mediterráneo
2.
Sci Rep ; 14(1): 13585, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866857

RESUMEN

In this study, Delonix regia seed pods (DRSPs) as a locally available material were refluxed in 90% H2SO4 to yield a novel D. regia seed pods biochar-sulfur oxide (DRB-SO). FTIR, BET, BJH, SEM, EDX, XRD, DSC and TGA were applied to investigate the characterizations of the prepared DRB-SO. Various adsorption parameters like pH effect, dye concentration effect, adsorbent dose, reaction time isotherm and kinetic study were carried out to explain the process of adsorption of methyl orange (MO) and methyl red (MR) onto DRB-SO. Langmuir's adsorption model perfectly explained the adsorption process onto the surface of DRB-SO as a monolayer. The maximum adsorption efficiency of DRB-SO was (98%) and (99.6%) for MO and MR respectively which attained after 150 min with an adsorbent dose of 0.75 g/L. The pseudo-second-order kinetic model best explained the process of adsorption of MO and MR dyes by DRB-SO. The highest observed adsorption amount was as high as 144.9 mg/g for MO dye and 285.7 mg/g for MR dye, comparable with other reported materials based on activated carbon materials. All of the outcomes signposted a prodigious perspective of the fabricated biochar composite material in wastewater treatment. Using the regenerating DRB-SO through an acid-base regeneration process, six cycles of adsorption/desorption were examined. Over the course of the cycles, there was a minor decrease in the adsorption and desorption processes. Also, it was revealed what the most plausible mechanism was for DRB-SO to absorb the ions of the MO and MR dyes.

3.
Sci Rep ; 14(1): 13021, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844483

RESUMEN

Environmental pollution is a major issue today due to the release of dyestuff waste into the environment through industrial wastewater. There is a need for affordable and effective adsorbents to remove harmful dyes from industrial waste. In this study, Mandarin biochar-CO-TETA (MBCOT) adsorbent was prepared and used to remove Acid Red 73 (AR73) dye from aqueous solutions. The efficiency of dye removal was influenced by various factors such as solution pH, contact time, initial AR73 dye concentration, and MBCOT dosage. All experiments were conducted at 25 ± 2 °C, and the optimal pH was determined to be 1.5. The optimal conditions for dye removal were found to be an AR73 dye concentration of 100 mg/L, an MBCOT dosage of 1.5 g/L, and a contact time of 150 min, resulting in a 98.08% removal rate. Various models such as pseudo-first-order (PFO), pseudo-second-order (PSO), film diffusion (FD), and intraparticle diffusion (IPD) were used to determine the adsorption kinetics of AR73 dye onto MBCOT. The results showed that the PSO model best explains the AR73 dye adsorption. Furthermore, Langmuir and Freundlich's isotherm models were studied to explain the adsorption mechanism using experimental data. The adsorption capacities at equilibrium (qe) in eliminating AR73 dye varied from 92.05 to 32.15, 128.9 to 65.39, 129.25 to 91.69, 123.73 to 111.77, and 130.54 to 125.01 mg/g. The maximum adsorption capacity (Qm) was found to be 140.85 mg/g. In conclusion, this study demonstrates that biochar produced from mandarin peels has the potential to be an effective and promising adsorbent for removing AR73 dye from water.

4.
Sci Rep ; 14(1): 11583, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773106

RESUMEN

The present investigation explores the efficacy of green algae Ulva lactuca biochar-sulfur (GABS) modified with H2SO4 and NaHCO3 in adsorbing methylene blue (MB) dye from aqueous solutions. The impact of solution pH, contact duration, GABS dosage, and initial MB dye concentration on the adsorption process are all methodically investigated in this work. To obtain a thorough understanding of the adsorption dynamics, the study makes use of several kinetic models, including pseudo-first order and pseudo-second order models, in addition to isotherm models like Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich. The findings of the study reveal that the adsorption capacity at equilibrium (qe) reaches 303.78 mg/g for a GABS dose of 0.5 g/L and an initial MB dye concentration of 200 mg/L. Notably, the Langmuir isotherm model consistently fits the experimental data across different GABS doses, suggesting homogeneous adsorption onto a monolayer surface. The potential of GABS as an efficient adsorbent for the extraction of MB dye from aqueous solutions is highlighted by this discovery. The study's use of kinetic and isotherm models provides a robust framework for understanding the intricacies of MB adsorption onto GABS. By elucidating the impact of various variables on the adsorption process, the research contributes valuable insights that can inform the design of efficient wastewater treatment solutions. The comprehensive analysis presented in this study serves as a solid foundation for further research and development in the field of adsorption-based water treatment technologies.


Asunto(s)
Carbón Orgánico , Azul de Metileno , Ulva , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico/química , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno/química , Azufre/química , Ulva/química , Agua/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
5.
Sci Rep ; 14(1): 9144, 2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644378

RESUMEN

In this research, different Co2+ doped ZnO nanoparticles (NPs) were hydrothermally synthesized by an environmentally friendly, sustainable technique using the extract of P. capillacea for the first time. Co-ZnO was characterized and confirmed by FTIR, XPS, XRD, BET, EDX, SEM, TEM, DRS UV-Vis spectroscopy, and TGA analyses. Dislocation density, micro strains, lattice parameters and volume of the unit cell were measured using XRD results. XRD suggests that the average size of these NPs was between 44.49 and 65.69 nm with a hexagonal wurtzite structure. Tauc plot displayed that the optical energy bandgap of ZnO NPs (3.18) slowly declines with Co doping (2.96 eV). Near complete removal of the ciprofloxacin (CIPF) antibiotic was attained using Green 5% of Hy-Co-ZnO in the existence of visible LED light which exhibited maximum degradation efficiency (99%) within 120 min for 30 ppm CIPF initial concentration. The photodegradation mechanism of CIPF using Green Hy-Co-ZnO NPs followed the Pseudo-first-order kinetics. The Green Hy-Co-ZnO NPs improved photocatalytic performance toward CIPF for 3 cycles. The experiments were designed using the RSM (CCD) method for selected parameters such as catalyst dosage, antibiotic dosage, shaking speed, and pH. The maximal CIPF degradation efficiency (96.4%) was achieved under optimum conditions of 39.45 ppm CIPF dosage, 60.56 mg catalyst dosage, 177.33 rpm shaking speed and pH 7.57.


Asunto(s)
Antibacterianos , Ciprofloxacina , Cobalto , Luz , Fotólisis , Óxido de Zinc , Óxido de Zinc/química , Ciprofloxacina/química , Cobalto/química , Antibacterianos/química , Nanopartículas del Metal/química , Tecnología Química Verde/métodos , Nanopartículas/química , Cinética , Catálisis
6.
Open Vet J ; 14(1): 553-563, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633170

RESUMEN

Background: Bacterial infections causing digestive problems are among the most serious threats to Egypt's duck industry, owing to their effects on feed utilization and body weight gain. Aim: As a result, the goal of this study was to identify bacterial pathogens causing enteritis in ducks as well as testing their antimicrobials resistance capabilities. Methods: Forty-two duck flocks from different localities at four Egyptian Governorates (El-Sharkia, El-Gharbia, El-Dakahlia, and El-Qaliobia) have been subjected to clinical and postmortem examination as well as bacterial isolation and identification. The liver samples have been collected aseptically from freshly euthanized ducks for bacterial isolation followed by identification using conventional biochemical tests, VITEK 2 system, and confirmatory polymerase chain reaction (PCR) for detection of the uid A gene (beta-glucuronidase enzyme) of Escherichia coli. In addition, antimicrobial sensitivity testing for the isolates against different antimicrobials by the VITEK 2 system was used. Results: Forty-six positive bacterial isolates were identified using conventional methods and the VITEK 2 system including Staphylococcus spp. (52.17%), E. coli (41.30%), and 2.17% for each of Enterococcus casseli lavus, Salmonella enterica subspecies arizonae, and Enterobacter cloacae. PCR was positive for E. coli uid A gene at 556 bp. The antibiogram patterns of isolated pathogens from naturally infected ducks in our work demonstrated 87% multidrug resistance with varying results against different antimicrobial drugs tested. Such findings supported the fact of the upgrading multidrug resistance of Staphylococci and Enterobacteriacae. Conclusion: The most prevalent bacterial pathogens associated with duck enteritis were Staphylococcus spp. and E. coli with the first report of S. enterica subspecies arizonae causing duck enteritis in Egypt.


Asunto(s)
Salmonella enterica , Animales , Salmonella arizonae , Patos , Egipto , Escherichia coli , Antibacterianos/farmacología , Staphylococcus , Resistencia a Múltiples Medicamentos
7.
Sci Rep ; 14(1): 5075, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429365

RESUMEN

In the present study, three process parameters optimization were assessed as controlling factors for the biogas and biomethane generation from brown algae Cystoceira myrica as the substrate using RSM for the first time. The biomass amount, Co3O4NPs dosage, and digestion time were assessed and optimized by RSM using Box-Behnken design (BBD) to determine their optimum level. BET, FTIR, TGA, XRD, SEM, XPS, and TEM were applied to illustrate the Co3O4NPs. FTIR and XRD analysis established the formation of Co3O4NPs. The kinetic investigation confirmed that the modified model of Gompertz fit the research results satisfactorily, with R2 ranging between 0.989-0.998 and 0.879-0.979 for biogas and biomethane production, respectively. The results recommended that adding Co3O4NPs at doses of 5 mg/L to C. myrica (1.5 g) significantly increases biogas yield (462 mL/g VS) compared to all other treatments. The maximum biomethane generation (96.85 mL/g VS) was obtained with C. myrica at (0 mg/L) of Co3O4NPs. The impacts of Co3O4NPs dosages on biomethane production, direct electron transfer (DIET) and reactive oxygen species (ROS) were also investigated in detail. The techno-economic study results demonstrate the financial benefits of this strategy for the biogas with the greatest net energy content, which was 2.82 kWh with a net profit of 0.60 USD/m3 of the substrate and was produced using Co3O4NPs (5 mg/L).


Asunto(s)
Cobalto , Nanopartículas , Óxidos , Algas Marinas , Especies Reactivas de Oxígeno , Biocombustibles , Electrones
8.
Sci Rep ; 14(1): 6830, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514691

RESUMEN

A novel form of biochar was created by dehydration of Date palm kernel with 85% sulfuric acid. It was examined how the newly produced biochar (DPKB-S) affected the aqueous solution's capacity to extract Methylene Blue (MB) dye. The prepared DPKB-S was categorized by BET, BJH, FT-IR, SEM, EDX, DSC, and TGA analyses. The ideal pH for the MB dye adsorption by DPKB-S is 8. With 0.75 g L-1 of DPKB-S and an initial concentration of 50 ppm MB dye, Date Palm Kernel Biochar-Sulfur (DPKB-S) had the highest removal percentage of 100%. The Langmuir and Freundlich isotherm models were used to investigate the collected data. Freundlich model is the model that best covers MB dye adsorption in DPKB-S at low concentrations (0.75-1.25 g L-1) and the Langmuir model at high concentrations (1.5-1.75 g L-1). The Langmuir model maximum adsorption capacity (Qm) of the DPKB-S was 1512.30 mg g-1. Furthermore, a variety of error function models were applied to investigate the isotherm models derived data, including Marquardt's percent standard deviation (MPSD), the sum of absolute errors (EABS), the sum of the errors squared (ERRSQ), root mean square errors (RMS), Chi-square error (X2), the average relative error (ARE), average percent errors (APE), and hybrid error function (HYBRID). Kinetic data were calculated by intraparticle diffusion (IPD), pseudo-second-order (PSO), pseudo-first-order (PFO), and film diffusion (FD) models. A PSO rate model with a strong correlation (R2 = 1.00) largely regulated the adsorption rate. The removal mechanism of MB dye by DPKB-S is based on the principle that these positively charged dyes are attracted by electrostatic attraction forces due to the growth in the number of negatively charged regions at basic pH value. According to the results, DPKB-S shows promise as an affordable and competent adsorbent for the adsorption of MB dye. It can be used frequently without experiencing a discernible decrease in adsorption efficiency.

9.
Sci Rep ; 14(1): 5542, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448468

RESUMEN

There are several industrial uses for carbon black (CB), an extremely fine powdered form of elemental carbon that is made up of coalesced particle aggregates and almost spherical colloidal particles. Most carbon black is produced from petroleum-derived feedstock, so there is a need to find an alternative method to produce CB, which relies on renewable resources such as algae and agricultural waste. A process involving hydrolysis, carbonization, and pyrolysis of green algae and sugarcane bagasse was developed, as the optimal hydrolysis conditions (16N sulfuric acid, 70 °C, 1 h, 1:30 g/ml GA or SC to sulfuric acid ratio), a hydrolysis ratio of 62% for SC and 85% for GA were achieved. The acidic solution was carbonized using a water bath, and the solid carbon was then further pyrolyzed at 900 °C. The obtained carbon black has a high carbon content of about 90% which is confirmed by EDX, XRD, and XPS analysis. By comparison carbon black from sugar cane bagasse (CBB) and carbon black from green algae Ulva lactuca (CBG) with commercial carbon black (CCB) it showed the same morphology which was confirmed by SEM analysis. The BET data, showed the high specific surface area of prepared CB, which was 605 (m2/g) for CBB and 424 (m2/g) for CBG compared with commercial carbon black (CBB) was 50 (m2/g), also the mean pore diameter of CBB, CBG and CCB indicated that CBB and CBG were rich in micropores, but CCB was rich in mesoporous according to IUPAC classification. This study might have created a technique that can be used to make carbon black from different kinds of biomass.


Asunto(s)
Chlorophyta , Algas Comestibles , Nanopartículas , Saccharum , Ácidos Sulfúricos , Ulva , Celulosa , Hollín , Carbono
10.
Sci Rep ; 14(1): 5082, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429376

RESUMEN

The aim of this work is to examine the levels, distribution, bases, and hazards of n-alkanes (n-C9 to n-C20) and PAHs in the seawater and sediments around oil production locations in the whole delta region. The variations in the levels of PAHs and n-alkanes in seawater and sediment of the Nile delta coast of the Mediterranean were investigated using GC-MS/MS. The Σn-alkanes residues ranged between 12.05 and 93.51 mg/L (mean: 50.45 ± 17.49 mg/L) and 4.70 to 84.03 µg/g (mean: 31.02 ± 27.995 µg/g) in seawater and sediments, respectively. Total PAHs concentrations ranged between 4.485 and 16.337 µg/L (average: 9.47 ± 3.69 µg/L) and 1.32 to 28.38 ng/g (average 8.61 ± 7.57 ng/g) in seawater and sediment samples, respectively. The CPI (carbon preference index) values fluctuated between 0.62 and 1.72 (seawater) and from 0.234 to 2.175 (sediment), proposing the variation sources of n-alkane in the studied area. PAHs concentrations were lower than the Effective Range Low (ERL) and Effective Range Median (ERM) levels. The Toxic Equivalent Quotient (TEQ) values oscillated between 0.002 and 6.84 ng/L and from 3.72 to 13.48 ng/g for the seawater and sediment samples, respectively. The Ant/(Ant + Phe) ratio in sediment and seawater samples indicated a pyrolytic source while the BaA/(BaA + Chry) ratio indicates petrogenic sources in most of the studied stations.

11.
Sci Rep ; 14(1): 2016, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263230

RESUMEN

Photodegradation is considered a significant method engaged for the elimination of organic pollutants from water. In this work, hydrothermal cobalt-doped zinc oxide nanoparticles (Hy-Co-ZnO NPs) loaded with 5, 10, and 15% cobalt were prepared in a hydrothermal way and were investigated as a photocatalyst for the Ciprofloxacin (CIPF) degradation under visible irradiation using LED-light. Characterization approaches such as FTIR, XRD, XPS, DRS UV-vis spectroscopy, SEM, TEM, BET, EDX and TGA were used for the investigation of the fabricated Hy-Co-ZnO NPs. The studies indicated that 10% Hy-Co-ZnO NPs was the most efficient catalyst for the CIPF photolysis compared to ZnO NPs and other Hy-Co-ZnO NPs with 5 and 15% cobalt content. Higher photocatalytic activity (> 98%) of 20 mg/L of CIPF solution was attained within 60 min. The reaction kinetics showed that the first-order model is suitable for displaying the rate of reaction and amount of CIPF elimination with R2 = 0.9883. Moreover, Central composite design (CCD) optimization of the 10% Hy-Co-ZnO NPs was also studied.

12.
Sci Rep ; 14(1): 1019, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200036

RESUMEN

Ag-La-CaTiO3 was used in place of sacrificial agents to assess the influence of operational factors on hydrogen generation in a photocatalytic water splitting system. After being synthesized, the physicochemical features of this substance were accurately described. Several characterization techniques including UV-Vis spectroscopy, FTIR, XRD, XPS, EDX, SEM, TGA, DRS and BET were applied to study the prepared Ag-La-CaTiO3 photocatalyst. Ag-La-CaTiO3 shows a band in the visible wavelength between 400 and 800 nm at < 560 nm compared to the main CaTiO3 band at 350 nm. Ag 4d5s electrons transition to the conduction band (CB), which is responsible for the absorption band at ~ 560 nm (> 2.21 eV). The effects of catalyst concentration, light intensity, and beginning solution pH on the H2 generation rate may all be evaluated simultaneously using experimental design procedures. Up to a maximum threshold, where a drop in the rate of gas evolution occurs, it was confirmed that the increase in catalyst dose positively affects system productivity. The initial solution pH plays a crucial role in H2 production, and pH = 4 and 10 are the optimum pH with a higher yield of H2 production. The highest total H2 production rate, 6246.09 µmol, was obtained using a catalyst concentration of 700 mg and solution pH equal to 10 under 1200 W Vis lamp for 3 h. For prediction and optimization, a D-Optimal design was applied and the optimal results were pH 4, the catalyst dose of 645.578 mg and 1200 W with H2 production of 6031.11 µmol.

13.
Biol Trace Elem Res ; 202(2): 787-799, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37351739

RESUMEN

The current study aimed to compare the utilization efficiency of iron (Fe) feed additives from either bulk or nano sources in Nile tilapia, Oreochromis niloticus diets on growth, haematological, immunity, anti-oxidative, and intestinal topography capacities. Five isonitrogenous and isoenergetic diets were performed; the basal diet served as a control with no Fe added, whereas the experimental diets were shaped by adding bulk-Fe2O3 and nano-Fe2O3 to the basal diet to preserve Fe levels at 0.2 and 0.4 mg kg-1, respectively. Results indicated that superior growth performance was recorded in fish-fed diets supplemented with 0.4 nano-Fe2O3 mg kg-1 diet. In addition, the highest (P ≤ 0.05) survival rate, absorption area of villous (AAV), mucosal to serosal amplification ratio (MSR), and villi parameters (height and width) were noticed in fish fed diet enrichment with either bulk or nano-Fe2O3 source. However, the superiority observed in nano-Fe2O3 fish groups. Also, the highest values of plasma albumin, total protein, high-density lipoprotein cholesterol (HDL-C), white blood cells (WBCs), and lymphocyte absolute count (LYM) (P ≤ 0.05) recorded in fish fed a diet supplemented with nano-Fe2O3 versus the basal diet. Moreover, the highest values of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), and plasma lysozyme activity (P ≤ 0.05) were observed in fish fed 0.4 mg/kg-1 nano-Fe2O3, while the lowest value was recorded in fish fed the control diet. The best value of malondialdehyde activity (P ≤ 0.05) recorded in a fish-fed diet supplemented with 0.4 mg/kg-1 nano-Fe2O3. The current findings emphasize the importance of including Fe to improve fish growth, immunity, antioxidant capabilities, and intestinal structure, primarily with a nano-Fe source, which demonstrated a more effective function in satisfying Nile tilapia dietary Fe requirements and improving the aforementioned parameters.


Asunto(s)
Cíclidos , Animales , Hierro/metabolismo , Suplementos Dietéticos , Dieta , Antioxidantes/metabolismo , Alimentación Animal/análisis
14.
Sci Rep ; 13(1): 18871, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914771

RESUMEN

This work examined the polycyclic aromatic hydrocarbons (PAHs) and n-alkanes quantities, sources, and hazards in sediments collected from the Egyptian Western Desert Oases namely: Dakhla, Kharga and Farafra oases. The n-alkane (C9-C20) residue concentrations have ranged from 0.66 to 2417.91 µg/g recorded for the three Oases. On the other hand, the total n-alkane ranged from 448.54 µg/g to 8442.60 µg/g. Higher carbon preference index (CPI) values (> 1.0) proposed that the natural sources could be the main contributor to n-alkanes in the Oases sediment. GC-MS/MS (selected reaction monitoring (SRM) method) was used for the determination of the ΣPAHs concentrations in the studied sediments. The ΣPAHs concentrations (ng/g, dry weight) in the studied three Oases varied from 10.18 to 790.14, 10.55 to 667.72, and from 38.27 to 362.77 for the Kharga, Dakhla and Farafra Oases, respectively. The higher molecular weight PAHs were the most abundant compounds in the collected samples. Assessing potential ecological and human health issues highlighted serious dangers for living things and people. All the investigated PAHs had cancer risk values between 1.43 × 10-4 and 1.64 × 10-1, this finding suggests that PAHs in the samples under study pose a moderate risk of cancer. The main sources of PAHs in this study are biomass, natural gas, and gasoline/diesel burning emissions.


Asunto(s)
Neoplasias , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Humanos , Egipto , Espectrometría de Masas en Tándem , Hidrocarburos , Hidrocarburos Policíclicos Aromáticos/análisis , Alcanos/análisis , Medición de Riesgo , Sedimentos Geológicos/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , China
15.
Sci Rep ; 13(1): 19329, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935868

RESUMEN

From the perspective of environmental protection, the highly efficient degradation of antibiotics and organic dyes in wastewater needs to be tackled as soon as possible. In this study, an ecofriendly and green cube-shaped cobalt-doped zinc oxide nanoparticles (Co-ZnO NPs) photocatalyst using Pterocladia Capillacea (P. Capillacea) water extract loaded with 5, 10, and 15% cobalt ions were formed via co-precipitation process to degrade antibiotics. The prepared Co-ZnO NPs were tested as a photocatalyst for the photodegradation of ciprofloxacin (CIPF) in the presence of a visible LED-light source. Co-ZnO NPs have been obtained through the co-precipitation method in the presence of P. Capillacea extract as a green capping agent and reducing agent, for the first time. Several characterization techniques including FTIR, XRD, BET, XPS, TEM, EDX, SEM, TGA and DRS UV-Vis spectroscopy were applied to study the prepared Co-ZnO NPs. XRD results suggested that the average size of these NPs ranged between 42.82 and 46.02 nm with a hexagonal wurtzite structure. Tauc plot shows that the optical energy bandgap of ZnO NPs (3.19 eV) gradually decreases to 2.92 eV by Co doping. Examinations showed that 5% Co-ZnO NPs was the highest efficient catalyst for the CIPF photodegradation when compared with ZnO NPs and other 10 and 15% Co-ZnO NPs. A 10 mg/L solution of CIPF was photo-degraded (100%) within the first 15 min irradiation. The kinetics showed that the first-order model is suitable for displaying the rate of reaction and amount of CIPF elimination with R2 = 0.952. Moreover, central composite design optimization of the 5% Co-doped ZnO NPs was also investigated.

16.
Front Bioeng Biotechnol ; 11: 1251879, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781541

RESUMEN

Introduction: A soft pneumatic muscle was developed to replicate intricate ankle motions essential for rehabilitation, with a specific focus on rotational movement along the x-axis, crucial for walking. The design incorporated precise geometrical parameters and air pressure regulation to enable controlled expansion and motion. Methods: The muscle's response was evaluated under pressure conditions ranging from 100-145 kPa. To optimize the muscle design, finite element simulation was employed to analyze its performance in terms of motion range, force generation, and energy efficiency. An experimental platform was created to assess the muscle's deformation, utilizing advanced techniques such as high-resolution imaging and deep-learning position estimation models for accurate measurements. The fabrication process involved silicone-based materials and 3D-printed molds, enabling precise control and customization of muscle expansion and contraction. Results: The experimental results demonstrated that, under a pressure of 145 kPa, the y-axis deformation (y-def) reached 165 mm, while the x-axis and z-axis deformations were significantly smaller at 0.056 mm and 0.0376 mm, respectively, highlighting the predominant elongation in the y-axis resulting from pressure actuation. The soft muscle model featured a single chamber constructed from silicone rubber, and the visually illustrated and detailed geometrical parameters played a critical role in its functionality, allowing systematic manipulation to meet specific application requirements. Discussion: The simulation and experimental results provided compelling evidence of the soft muscle design's adaptability, controllability, and effectiveness, thus establishing a solid foundation for further advancements in ankle rehabilitation and soft robotics. Incorporating this soft muscle into rehabilitation protocols holds significant promise for enhancing ankle mobility and overall ambulatory function, offering new opportunities to tailor rehabilitation interventions and improve motor function restoration.

17.
Top Curr Chem (Cham) ; 381(6): 31, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37906318

RESUMEN

Human existence and societal growth are both dependent on the availability of clean and fresh water. Photocatalysis is a type of artificial photosynthesis that uses environmentally friendly, long-lasting materials to address energy and environmental issues. There is currently a considerable demand for low-cost, high-performance wastewater treatment equipment. By changing the structure, size, and characteristics of nanomaterials, the use of nanotechnology in the field of water filtration has evolved dramatically. Semiconductor-assisted photocatalysis has recently advanced to become among the most promising techniques in the fields of sustainable energy generation and ecological cleanup. It is environmentally beneficial, cost-effective, and strictly linked to the zero waste discharge principle used in industrial effluent treatment. Owing to the reduction or removal of created unwanted byproducts, the green synthesis of photoactive nanomaterial is more beneficial than chemical synthesis approaches. Furthermore, unlike chemical synthesis methods, the green synthesis method does not require the use of expensive, dangerous, or poisonous ingredients, making it a less costly, easy, and environmental method for photocatalyst synthesis. This work focuses on distinct greener synthesis techniques utilized for the production of new photocatalysts, including metals, metal doped-metal oxides, metal oxides, and plasmonic nanostructures, including the application of artificial intelligence and machine learning to the design and selection of an innovative photocatalyst in the context of energy and environmental challenges. A brief overview of the industrial and environmental applications of photocatalysts is also presented. Finally, an overview and recommendations for future research are given to create photocatalytic systems with greatly improved stability and efficiency.


Asunto(s)
Inteligencia Artificial , Nanoestructuras , Humanos , Industrias , Aprendizaje Automático , Óxidos
18.
Mar Pollut Bull ; 196: 115692, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37871457

RESUMEN

Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were studied in the Nile Delta area of Egypt's southern Mediterranean for their environmental impacts, probable sources, and ecological risk assessment. Using the Gas Chromatography Triple Quadrupole technique, the residues of 16 OCPs and 18 PCBs were determined. The total OCPs content in the seawater and sediment samples ranged from 0.108 to 10.97 µg/L and 0.301 to 5.268 ng/g, respectively, while the PCBs residues had values between 0.808 and 1069.75 µg/L in seawater and between not detected and 575.50 ng/g in sediment samples. The findings of the risk evaluation showed that, except for endosulfan-I, OCPs caused little harm in seawater. However, PCB180, PCB153, PCB156, PCB126 and PCB138 posed a comparatively significant risk. The concentration of DDTs was higher than the effect range low and threshold effect level but remained below the effect range median and probable effect level, posing a minimal ecological concern.


Asunto(s)
Hidrocarburos Clorados , Plaguicidas , Bifenilos Policlorados , Contaminantes Químicos del Agua , Bifenilos Policlorados/análisis , Agua/análisis , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Medición de Riesgo , Monitoreo del Ambiente/métodos
19.
Sci Rep ; 13(1): 12724, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543711

RESUMEN

Chemical industry effluent may pose significant environmental risks to both human health and the economy if it is not properly managed. As a result, scientists and decision-makers are paying increasing attention to developing a sustainable, low-cost wastewater treatment technique. This work aims to investigate the adsorption of Methylene Blue (MB) dye present in water using biochar derived from sawdust modified by boiling in an ammonia solution (SDBA). The properties of SDBA were characterized by BET, SEM, XRD, BJH, FT-IR, DTA, EDX and TGA analyses. The presence of -OH and -NH groups in SDBA was confirmed by FTIR, which proved that the NH4OH treatment of biochar successfully added nitrogen groups on its surface. The influence of pH (2 to 12), MB dye initial concentration (20 to 120 mg/L), adsorbent dosage (0.5 to 4.0 g/L) and contact time (0 to 180 min) on the adsorption process has been investigated. The adsorption of MB dye is more favorable at basic pH, with optimum adsorption at pH 8. Using a starting concentration of 20 mg/L of MB dye and a 4.0 g/L SDBA dose, the maximum percent clearance of MB dye was 99.94%. Experimental results were fitted to the Freundlich (FIM), Tempkin (TIM) and Langmuir (LIM) isotherm models (IMs). The FIM fitted the equilibrium data well, with a 643.74 mg/g Qm. Various error function models were used to test the data obtained from IMs. According to Error Function results, experimental data showed that it fits better for LIM and FIM. Kinetic studies indicated that the MB dye adsorption procedure followed pseudo-second-order (PSOM) kinetics based on film diffusion (FDM), pseudo-first-order (PFOM) and intra-particle diffusion models (IPDM). MB dye sorption on the SDBA involved electrostatic interaction, surface participation, hydrogen bond and π-π interactions. The adsorption mechanism of MB dye by SDBA was proposed as physical adsorption via the electrostatic attraction process. SDBA is an effective adsorbent in removing MB dye from water. Six adsorption-desorption cycles of the MB dye were run through the regeneration of SDBA with only a minimal amount of adsorption capacity loss, demonstrating the reusability of manufactured SDBA.

20.
Sci Rep ; 13(1): 12431, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528164

RESUMEN

In this study, sawdust biochar-O3-TETA (SDBT), a novel biochar, was prepared via treatment with 80% sulfuric acid, followed by oxidation by ozone and subsequent treatment with boiling Triethylenetetramine (TETA). Characterization studies of the prepared SDBT adsorbent were performed with SEM-EDX, BET, XRD, BJH, FT-IR, DTA and TGA analyses. The adsorption efficiency of MB dye by SDBT biochar from water was investigated. Methylene Blue (MB) dye absorption was most effective when the solution pH was 12. The maximum removal % of MB dye was 99.75% using 20 mg/L as starting MB dye concentration and 2.0 g/L SDBT dose. The Qm of the SDBT was 568.16 mg/g. Actual results were fitted to Temkin (TIM), Freundlich (FIM), and Langmuir (LIM) isotherm models. The experimental results for SDBT fitted well with all three models. Error function equations were used to test the results obtained from these isotherm models, which showed that the experimental results fit better with TIM and FIM. Kinetic data were investigated, and the pseudo-second-order (PSOM) had R2 > 0.99 and was mainly responsible for guiding the absorption rate. The removal mechanism of the MB dye ions in a base medium (pH 12) may be achieved via physical interaction due to electrostatic interaction between the SDBT surface and the positive charge of the MB dye. The results show that SDBT effectively removes the MB dye from the aqueous environment and can be used continually without losing its absorption efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...