Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Rapid Commun Mass Spectrom ; 28(9): 995-1003, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24677520

RESUMEN

RATIONALE: The signal intensity of a given molecule across a tissue section when measured using mass spectrometry imaging (MSI) is prone to changes caused by the molecular heterogeneity across the surface of the tissue. Here we propose a strategy to investigate these effects using electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) on a single high-resolution mass spectrometry (HRMS) platform. METHODS: A rat was administered with a single inhaled dose of a compound and sacrificed 1 h after dosing. Sections were prepared from the excised frozen lung and analysed using MALDI, liquid extraction surface analysis (LESA) nano-ESI-MS and nano-ESI liquid chromatography (LC)/MS. The ESI and MALDI ion sources were mounted either side of the ion transfer system of the same Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. RESULTS: MALDI MSI clearly demonstrated widespread distribution of the dosed molecule throughout the lung, with the exception of a non-lung section of tissue on the same sample surface. Comparison of the lipid signals across the sample indicated a change in signal between the lung and the adipose tissue present on the same section. Use of ESI and MALDI, with and without an internal standard, supported the evaluation of changes in the signal of the dosed molecule across the tissue section. CONCLUSIONS: The results demonstrate the successful application of a dual ion source HRMS system to the systematic evaluation of data from MALDI MSI, used to determine the distribution of an inhaled drug in the lung. The system discussed is of great utility in investigating the effects of ion suppression and evaluating the quantitative and qualitative nature of the MSI data.


Asunto(s)
Histocitoquímica/métodos , Espectrometría de Masas/métodos , Imagen Molecular/métodos , Animales , Cromatografía Liquida , Lípidos/análisis , Lípidos/química , Pulmón/química , Nanotecnología , Ratas , Distribución Tisular
2.
Adv Drug Deliv Rev ; 71: 15-33, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24530633

RESUMEN

Alveolar macrophage (AM) responses are commonly induced in inhalation toxicology studies, typically being observed as an increase in number or a vacuolated 'foamy' morphology. Discriminating between adaptive AM responses and adverse events during nonclinical and clinical development is a major scientific challenge. When measuring and interpreting induced AM responses, an understanding of macrophage biology is essential; this includes 'sub-types' of AMs with different roles in health and disease and mechanisms of induction/resolution of AM responses to inhalation of pharmaceutical aerosols. In this context, emerging assay techniques, the utility of toxicokinetics and the requirement for new biomarkers are considered. Risk assessment for nonclinical toxicology findings and their translation to effects in humans is discussed from a scientific and regulatory perspective. At present, when apparently adaptive macrophage-only responses to inhaled investigational products are observed in nonclinical studies, this poses a challenge for risk assessment and an improved understanding of induced AM responses to inhaled pharmaceuticals is required.


Asunto(s)
Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Macrófagos Alveolares/metabolismo , Administración por Inhalación , Aerosoles , Animales , Biomarcadores/metabolismo , Descubrimiento de Drogas/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Humanos , Medición de Riesgo/métodos , Pruebas de Toxicidad/métodos
3.
Adv Drug Deliv Rev ; 63(1-2): 69-87, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21144875

RESUMEN

Dosimetry, safety and the efficacy of drugs in the lungs are critical factors in the development of inhaled medicines. This article considers the challenges in each of these areas with reference to current industry practices for developing inhaled products, and suggests collaborative scientific approaches to address these challenges. The portfolio of molecules requiring delivery by inhalation has expanded rapidly to include novel drugs for lung disease, combination therapies, biopharmaceuticals and candidates for systemic delivery via the lung. For these drugs to be developed as inhaled medicines, a better understanding of their fate in the lungs and how this might be modified is required. Harmonized approaches based on 'best practice' are advocated for dosimetry and safety studies; this would provide coherent data to help product developers and regulatory agencies differentiate new inhaled drug products. To date, there are limited reports describing full temporal relationships between pharmacokinetic (PK) and pharmacodynamic (PD) measurements. A better understanding of pulmonary PK and PK/PD relationships would help mitigate the risk of not engaging successfully or persistently with the drug target as well as identifying the potential for drug accumulation in the lung or excessive systemic exposure. Recommendations are made for (i) better industry-academia-regulatory co-operation, (ii) sharing of pre-competitive data, and (iii) open innovation through collaborative research in key topics such as lung deposition, drug solubility and dissolution in lung fluid, adaptive responses in safety studies, biomarker development and validation, the role of transporters in pulmonary drug disposition, target localisation within the lung and the determinants of local efficacy following inhaled drug administration.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Diseño de Fármacos , Preparaciones Farmacéuticas/administración & dosificación , Administración por Inhalación , Animales , Humanos , Pulmón/efectos de los fármacos
4.
Genome Med ; 1(12): 115, 2009 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-19968882

RESUMEN

BACKGROUND: The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors and members of the nuclear receptor superfamily. The PPAR family consists of three members: PPARalpha, PPARgamma, and PPARdelta. PPARdelta controls the transcription of genes involved in multiple physiological pathways, including cellular differentiation, lipid metabolism and energy homeostasis. The receptor is expressed almost ubiquitously, with high expression in liver and skeletal muscle. Although the physiological ligands of PPARdelta remain undefined, a number of high affinity synthetic ligands have been developed for the receptor as a therapeutic target for type 2 diabetes mellitus, dyslipidemia and the metabolic syndrome. METHODS: In this study, the metabolic role of PPARdelta activation has been investigated in liver, skeletal muscle, blood serum and white adipose tissue from ob/ob mice using a high affinity synthetic ligand and contrasted with PPARgamma activation. To maximize the analytical coverage of the metabolome, (1)H-nuclear magnetic resonance ((1)H-NMR) spectroscopy, gas chromatography-mass spectrometry (GC-MS) and ultra performance liquid chromatography-mass spectrometry (UPLC-MS) were used to examine metabolites from tissue extracts. RESULTS: Analysis by multivariate statistics demonstrated that PPARdelta activation profoundly affected glycolysis, gluconeogenesis, the TCA cycle and linoleic acid and alpha-linolenic acid essential fatty acid pathways. CONCLUSIONS: Although activation of both PPARdelta and PPARgamma lead to increased insulin sensitivity and glucose tolerance, PPARdelta activation was functionally distinct from PPARgamma activation, and was characterized by increased hepatic and peripheral fatty acid oxidative metabolism, demonstrating the distinctive catabolic role of this receptor compared with PPARgamma.

5.
Diabetes ; 57(2): 332-9, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18024853

RESUMEN

OBJECTIVE: Pharmacological use of peroxisome proliferator-activated receptor (PPAR)delta agonists and transgenic overexpression of PPARdelta in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans. RESEARCH DESIGN AND METHODS: The PPARdelta agonist (10 mg o.d. GW501516), a comparator PPARalpha agonist (20 mug o.d. GW590735), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress. RESULTS: Treatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (-30%), apolipoprotein B (-26%), LDL cholesterol (-23%), and insulin (-11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content (P < 0.05) and 30% reduction in urinary isoprostanes (P = 0.01) were also observed. Except for a lowering of triglycerides (-30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO(2) directly originating from the fat content of the meal was increased (P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b (CPT1b) was also significantly increased. CONCLUSIONS: The PPARdelta agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle.


Asunto(s)
Ácidos Grasos/metabolismo , Obesidad/fisiopatología , Estrés Oxidativo/fisiología , PPAR delta/fisiología , Tiazoles/farmacología , Adolescente , Adulto , Apolipoproteínas B/sangre , Apolipoproteínas B/efectos de los fármacos , HDL-Colesterol/sangre , HDL-Colesterol/efectos de los fármacos , Método Doble Ciego , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Oxidación-Reducción , PPAR delta/agonistas , Placebos , Triglicéridos/sangre
6.
Arterioscler Thromb Vasc Biol ; 27(2): 359-65, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17110604

RESUMEN

OBJECTIVE: Exercise increases fatty acid oxidation (FAO), improves serum high density lipoprotein cholesterol (HDLc) and triglycerides (TG), and upregulates skeletal muscle peroxisome proliferator activated receptor (PPAR)delta expression. In parallel, PPARdelta agonist-upregulated FAO would induce fatty-acid uptake (via peripheral lipolysis), and influence HDLc and TG-rich lipoprotein particle metabolism, as suggested in preclinical models. METHODS AND RESULTS: Healthy volunteers were allocated placebo (n=6) or PPARdelta agonist (GW501516) at 2.5 mg (n=9) or 10 mg (n=9), orally, once-daily for 2 weeks while hospitalized and sedentary. Standard lipid/lipoproteins were measured and in vivo fat feeding studies were conducted. Human skeletal muscle cells were treated with GW501516 in vitro and evaluated for lipid-related gene expression and FAO. Serum TG trended downwards (P=0.08, 10 mg), whereas TG clearance post fat-feeding improved with drug (P=0.02). HDLc was enhanced in both treatment groups (2.5 mg P=0.004, 10 mg P<0.001) when compared with the decrease in the placebo group (-11.5+/-1.6%, P=0.002). These findings complimented in vitro cell culture results whereby GW501516 induced FAO and upregulated CPT1 and CD36 expression, in addition to a 2-fold increase in ABCA1 (P=0.002). However, LpL expression remained unchanged. CONCLUSIONS: This is the first report of a PPARdelta agonist administered to man. In this small study, GW501516 significantly influenced HDLc and TGs in healthy volunteers. Enhanced in vivo serum fat clearance, and the first demonstrated in vitro upregulation in human skeletal muscle fat utilization and ABCA1 expression, suggests peripheral fat utilization and lipidation as potential mechanisms toward these HDL:TG effects.


Asunto(s)
Lipoproteínas HDL/metabolismo , PPAR delta/agonistas , Tiazoles/farmacología , Triglicéridos/metabolismo , Transportador 1 de Casete de Unión a ATP , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adulto , Antígenos CD36/genética , Antígenos CD36/metabolismo , Células Cultivadas , Ácidos Grasos/metabolismo , Humanos , Masculino , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Oxidación-Reducción/efectos de los fármacos , PPAR delta/genética , PPAR delta/metabolismo , Regulación hacia Arriba/efectos de los fármacos
7.
FEBS J ; 272(12): 3004-14, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15955060

RESUMEN

The pyruvate dehydrogenase complex occupies a central and strategic position in muscle intermediary metabolism and is primarily regulated by phosphorylation/dephosphorylation. The identification of multiple isoforms of pyruvate dehydrogenase kinase (PDK1-4) and pyruvate dehydrogenase phosphatase (PDP1-2) has raised intriguing new possibilities for chronic pyruvate dehydrogenase complex control. Experiments to date suggest that PDK4 is the major isoenzyme responsible for changes in pyruvate dehydrogenase complex activity in response to various different metabolic conditions. Using a cultured human skeletal muscle cell model system, we found that expression of both PDK2 and PDK4 mRNA is upregulated in response to glucose deprivation and fatty acid supplementation, the effects of which are reversed by insulin treatment. In addition, insulin directly downregulates PDK2 and PDK4 mRNA transcript abundance via a phosphatidylinositol 3-kinase-dependent pathway, which may involve glycogen synthase kinase-3 but does not utilize the mammalian target of rapamycin or mitogen-activated protein kinase signalling pathways. In order to further elucidate the regulation of PDK, the role of the peroxisome proliferators-activated receptors (PPAR) was investigated using highly potent subtype selective agonists. PPARalpha and PPARdelta agonists were found to specifically upregulate PDK4 mRNA expression, whereas PPARgamma activation selectively decreased PDK2 mRNA transcript abundance. PDP1 mRNA expression was unaffected by all conditions analysed. These results suggest that in human muscle, hormonal and nutritional conditions may control PDK2 and PDK4 mRNA expression via a common signalling mechanism. In addition, PPARs appear to independently regulate specific PDK isoform transcipt levels, which are likely to impart important metabolic mediation of fuel utilization by the muscle.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Músculo Esquelético/enzimología , Proteínas Quinasas/genética , Tirosina/análogos & derivados , Butiratos/farmacología , Células Cultivadas , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Insulina/metabolismo , Insulina/farmacología , Isoenzimas , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/enzimología , Oxazoles/farmacología , PPAR alfa/agonistas , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR delta/agonistas , PPAR delta/genética , PPAR delta/metabolismo , PPAR gamma/agonistas , PPAR gamma/genética , PPAR gamma/metabolismo , Compuestos de Fenilurea/farmacología , Proteínas Quinasas/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , ARN Mensajero/efectos de los fármacos , Tiazoles/farmacología , Tirosina/farmacología
8.
J Biol Chem ; 278(11): 9869-74, 2003 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-12522134

RESUMEN

Nicotinic acid has been used clinically for over 40 years in the treatment of dyslipidemia producing a desirable normalization of a range of cardiovascular risk factors, including a marked elevation of high density lipoprotein and a reduction in mortality. The precise mechanism of action of nicotinic acid is unknown, although it is believed that activation of a G(i)-G protein-coupled receptor may contribute. Utilizing available information on the tissue distribution of nicotinic acid receptors, we identified candidate orphan receptors. The selected orphan receptors were screened for responses to nicotinic acid, in an assay for activation of G(i)-G proteins. Here we describe the identification of the G protein-coupled receptor HM74 as a low affinity receptor for nicotinic acid. We then describe the subsequent identification of HM74A in follow-up bioinformatics searches and demonstrate that it acts as a high affinity receptor for nicotinic acid and other compounds with related pharmacology. The discovery of HM74A as a molecular target for nicotinic acid may facilitate the discovery of superior drug molecules to treat dyslipidemia.


Asunto(s)
Niacina/farmacología , Receptores Nicotínicos/química , Secuencia de Aminoácidos , Animales , Células CHO , Membrana Celular/metabolismo , Cricetinae , ADN Complementario/metabolismo , Bases de Datos como Asunto , Relación Dosis-Respuesta a Droga , Femenino , Furanos/farmacología , Humanos , Hiperlipidemias/metabolismo , Hipolipemiantes/farmacología , Concentración 50 Inhibidora , Masculino , Datos de Secuencia Molecular , Niacina/química , Oocitos/metabolismo , Unión Proteica , Pirazinas/farmacología , ARN Mensajero/metabolismo , Ratas , Receptores Nicotínicos/metabolismo , Homología de Secuencia de Aminoácido , Distribución Tisular , Xenopus
9.
Hum Mol Genet ; 11(1): 43-58, 2002 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-11772998

RESUMEN

Apolipoprotein E (apoE) is a 34 kDa glycoprotein with multiple actions that help protect against the development of atherosclerosis. Here, we have assessed the atheroprotective potential of an [E1(-), E3(-), polymerase(-)] adenovirus vector expressing human apoE, comparing intramuscular and intravenous (liver-directed) injections in hypercholesterolaemic apoE-deficient mice (apoE(-/-)). Intramuscular injections resulted in low expression of apoE and afforded no protection against atherogenesis. In contrast, 3 and 7 days after intravenous injections into young (6-8-week-old) apoE(-/-) mice, plasma levels of apoE were elevated and were accompanied by reductions in plasma cholesterol and normalization of lipoprotein profiles. Thereafter, plasma apoE was still detectable up to day 70, but gradually declined, although no humoral immune response was evoked, and there was a return to dyslipoproteinaemia. High levels of the vector genome were still present in livers of treated animals at 70 days, implying that decrease in apoE expression was due to cellular shutdown of the cytomegalovirus promoter. Importantly, liver-directed apoE gene transfer to these young mice retarded progression of atherosclerosis by 38% (treated, 8.21 +/- 1.05%; untreated, 13.26 +/- 0.98%, P < 0.05), during the 70 day study period. Moreover, when 10-month-old apoE(-/-) mice with advanced atherosclerosis were treated with the adenovirus vector, there was clear regression of aortic lesion area by 1 month [24.3 +/- 1.7% compared to 40.7 +/- 2.6% in baseline controls (P < 0.002)]. We conclude that the stability of the adenovirus vector genome in the livers of intravenously treated animals provides an ideal platform to evaluate liver-specific promoters for sustained transgene expression and control of atherosclerotic lesion pathology.


Asunto(s)
Adenoviridae/genética , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Arteriosclerosis/prevención & control , Animales , Aorta/metabolismo , Aorta/patología , Apolipoproteínas E/metabolismo , Arteriosclerosis/genética , Western Blotting , Colesterol/sangre , Cartilla de ADN/química , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnicas de Transferencia de Gen , Vectores Genéticos , Humanos , Lípidos/sangre , Lipoproteínas/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Músculo Esquelético/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...