Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12059, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802394

RESUMEN

COVID-19 is a global pandemic that caused a dramatic loss of human life worldwide, leading to accelerated research for antiviral drug discovery. Herbal medicine is one of the most commonly used alternative medicine for the prevention and treatment of many conditions including respiratory system diseases. In this study, a computational pipeline was employed, including network pharmacology, molecular docking simulations, and molecular dynamics simulations, to analyze the common phytochemicals of ginger rhizomes and identify candidate constituents as viral inhibitors. Furthermore, experimental assays were performed to analyze the volatile and non-volatile compounds of ginger and to assess the antiviral activity of ginger oil and hydroalcoholic extract. Network pharmacology analysis showed that ginger compounds target human genes that are involved in related cellular processes to the viral infection. Docking analysis highlighted five pungent compounds and zingiberenol as potential inhibitors for the main protease (Mpro), spike receptor-binding domain (RBD), and human angiotensin-converting enzyme 2 (ACE2). Then, (6)-gingerdiacetate was selected for molecular dynamics (MD) simulations as it exhibited the best binding interactions and free energies over the three target proteins. Trajectories analysis of the three complexes showed that RBD and ACE2 complexes with the ligand preserved similar patterns of root mean square deviation (RMSD) and radius of gyration (Rg) values to their respective native structures. Finally, experimental validation of the ginger hydroalcoholic extract confirmed the existence of (6)-gingerdiacetate and revealed the strong antiviral activity of the hydroalcoholic extract with IC 50 of 2.727 µ g / ml . Our study provides insights into the potential antiviral activity of (6)-gingerdiacetate that may enhance the host immune response and block RBD binding to ACE2, thereby, inhibiting SARS-CoV-2 infection.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Extractos Vegetales , SARS-CoV-2 , Zingiber officinale , Zingiber officinale/química , Antivirales/farmacología , Antivirales/química , Humanos , SARS-CoV-2/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Farmacología en Red , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , COVID-19/virología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química
2.
Int J Biol Macromol ; 268(Pt 1): 131740, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653428

RESUMEN

Alzheimer's disease (AD) is challenging due to its irreversible declining cognitive symptoms and multifactorial nature. This work tackles targeting both acetylcholinesterase (AChE) and BuChE with a multitarget-directed ligand (MTDL) through design, synthesis, and biological and in silico evaluation of a series of twenty eight new 5-substituted-2-anilino-1,3,4-oxadiazole derivatives 4a-g, 5a-g, 9a-g and 13a-g dual inhibitors of the target biomolecules. In vitro cholinesterases inhibition and selectivity assay of the synthesized derivatives showed excellent nanomolar level inhibitory activities. Compound 5a, the most potent inhibitor, elicited IC50s of 46.9 and 3.5 nM against AChE and BuChE, respectively (SI = 0.07), 5 folds better than the known dual inhibitor Rivastagmine. In vivo and ex vivo investigation showed that 5a significantly inhibited MDA levels and increased GSH contents, thus, attenuating the brain tissue oxidative stress. Additionally, 5a significantly decreased AChE and BuChE levels and inhibited self-mediated ß-amyloid aggregation in brains of treated rats. Histopathological and immunohistochemical evaluation demonstrated lessened damage and decreased caspase-3 and VEGF expression levels. In silico prediction of 5a's pharmacokinetics and toxicity profiles reflected promising results. Finally, 5a demonstrated tight binding interactions with the two target biomolecules upon docking along with stable complex formation with its bio-targets throughout the 100 ns MD trajectories.


Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Simulación del Acoplamiento Molecular , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/síntesis química , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Ratas , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Humanos , Simulación por Computador , Estrés Oxidativo/efectos de los fármacos , Ligandos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Masculino , Péptidos beta-Amiloides/metabolismo , Relación Estructura-Actividad , Ratas Wistar
3.
Sci Rep ; 14(1): 9386, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38653790

RESUMEN

Discovering effective anti-cancer agents poses a formidable challenge given the limited efficacy of current therapeutic modalities against various cancer types due to intrinsic resistance mechanisms. Cancer immunochemotherapy is an alternative strategy for breast cancer treatment and overcoming cancer resistance. Human Indoleamine 2,3-dioxygenase (hIDO1) and human Tryptophan 2,3-dioxygenase 2 (hTDO2) play pivotal roles in tryptophan metabolism, leading to the generation of kynurenine and other bioactive metabolites. This process facilitates the de novo synthesis of Nicotinamide Dinucleotide (NAD), promoting cancer resistance. This study identified a new dual hIDO1/hTDO2 inhibitor using a drug repurposing strategy of FDA-approved drugs. Herein, we delineate the development of a ligand-based pharmacophore model based on a training set of 12 compounds with reported hIDO1/hTDO2 inhibitory activity. We conducted a pharmacophore search followed by high-throughput virtual screening of 2568 FDA-approved drugs against both enzymes, resulting in ten hits, four of them with high potential of dual inhibitory activity. For further in silico and in vitro biological investigation, the anti-hypercholesterolemic drug Pitavastatin deemed the drug of choice in this study. Molecular dynamics (MD) simulations demonstrated that Pitavastatin forms stable complexes with both hIDO1 and hTDO2 receptors, providing a structural basis for its potential therapeutic efficacy. At nanomolar (nM) concentration, it exhibited remarkable in vitro enzyme inhibitory activity against both examined enzymes. Additionally, Pitavastatin demonstrated potent cytotoxic activity against BT-549, MCF-7, and HepG2 cell lines (IC50 = 16.82, 9.52, and 1.84 µM, respectively). Its anticancer activity was primarily due to the induction of G1/S phase arrest as discovered through cell cycle analysis of HepG2 cancer cells. Ultimately, treating HepG2 cancer cells with Pitavastatin affected significant activation of caspase-3 accompanied by down-regulation of cellular apoptotic biomarkers such as IDO, TDO, STAT3, P21, P27, IL-6, and AhR.


Asunto(s)
Antineoplásicos , Reposicionamiento de Medicamentos , Indolamina-Pirrol 2,3,-Dioxigenasa , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Triptófano Oxigenasa/antagonistas & inhibidores , Triptófano Oxigenasa/metabolismo , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Ensayos de Selección de Medicamentos Antitumorales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Farmacóforo
4.
RSC Adv ; 14(6): 4005-4024, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38288146

RESUMEN

In the current study, we biosynthesized copper oxide NPs (CuO NPs) utilizing the essential oils extracted from Boswellia carterii oleogum resin, which served as a bioreductant and capping agent with the help of microwave energy. Afterwards, the platinum(ii) based anticancer drug, carboplatin (Cr), was loaded onto the CuO NPs, exploiting the electrostatic interactions forming Cr@CuO NPs. The produced biogenic NPs were then characterized using zeta potential (ZP), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), and Fourier transform infrared spectroscopy (FTIR) techniques. In addition, the entrapment efficiency and release profile of the loaded Cr were evaluated. Thereafter, SRB assay was performed, where Cr@CuO NPs demonstrated the highest cytotoxic activity against human colon cancer cells (HCT-116) with an IC50 of 5.17 µg mL-1, which was about 1.6 and 2.2 folds more than that of Cr and CuO NPs. Moreover, the greenly synthesized nanoparticles (Cr@CuO NPs) displayed a satisfactory selectivity index (SI = 6.82), which was far better than the free Cr treatment (SI = 2.23). Regarding the apoptosis assay, the advent of Cr@CuO NPs resulted in an immense increase in the cellular population percentage of HCT-116 cells undergoing both early (16.02%) and late apoptosis (35.66%), significantly surpassing free Cr and CuO NPs. A study of HCT-116 cell cycle kinetics revealed the powerful ability of Cr@CuO NPs to trap cells in the Sub-G1 and G2 phases and impede the G2/M transition. RT-qPCR was utilized for molecular investigations of the pro-apoptotic (Bax and p53) and antiapoptotic genes (Bcl-2). The novel Cr@CuO NPs treatment rose above single Cr or CuO NPs therapy in stimulating the p53-Bax mediated mitochondrial apoptosis. The cellular and molecular biology investigations presented substantial proof of the potentiated anticancer activity of Cr@CuO NPs and the extra benefits that could be obtained from their use.

5.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37895849

RESUMEN

Natural products such as domestic herbal drugs which are easily accessible and cost-effective can be used as a complementary treatment in mild and moderate COVID-19 cases. This study aimed to detect and describe the efficiency of phenolics detected in the galangal-cinnamon mixture in the inhibition of SARS-CoV-2's different protein targets. The potential antiviral effect of galangal-cinnamon aqueous extract (GCAE) against Low Pathogenic HCoV-229E was assessed using cytopathic effect inhibition assay and the crystal violet method. Low Pathogenic HCoV-229E was used as it is safer for in vitro laboratory experimentation and due to the conformation and the binding pockets similarity between HCoV-229E and SARS-CoV-2 MPro. The GCAE showed a significant antiviral effect against HCoV-229E (IC50 15.083 µg/mL). Twelve phenolic compounds were detected in the extract with ellagic, cinnamic, and gallic acids being the major identified phenolic acids, while rutin was the major identified flavonoid glycoside. Quantum-chemical calculations were made to find molecular properties using the DFT/B3LYP method with 6-311++G(2d,2p) basis set. Quantum-chemical values such as EHOMO, ELUMO, energy gap, ionization potential, chemical hardness, softness, and electronegativity values were calculated and discussed. Phenolic compounds detected by HPLC-DAD-UV in the GCAE were docked into the active site of 3 HCoV-229E targets (PDB IDs. 2ZU2, 6U7G, 7VN9, and 6WTT) to find the potential inhibitors that block the Coronavirus infection pathways from quantum and docking data for these compounds. There are good adaptations between the theoretical and experimental results showing that rutin has the highest activity against Low Pathogenic HCoV-229E in the GCAE extract.

6.
RSC Med Chem ; 14(3): 507-519, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36970153

RESUMEN

A naturally inspired chemical library of 25 molecules was synthesised guided by 3-D dimensionality and natural product likeness factors to explore a new chemical space. The synthesised chemical library, consisting of fused-bridged dodecahydro-2a,6-epoxyazepino[3,4,5-c,d]indole skeletons, followed lead likeness factors in terms of molecular weight, C-sp3 fraction and Clog P. Screening of the 25 compounds against lung cells infected with SARS-CoV-2 led to the identification of 2 hits. Although the chemical library showed cytotoxicity, the two hits (3b, 9e) showed the highest antiviral activity (EC50 values of 3.7 and 1.4 µM, respectively) with an acceptable cytotoxicity difference. Computational analysis based on docking and molecular dynamics simulations against main protein targets in SARS-CoV-2 (main protease Mpro, nucleocapsid phosphoprotein, non-structural protein nsp10-nsp16 complex and RBD/ACE2 complex) were performed. The computational analysis proposed the possible binding targets to be either Mpro or the nsp10-nsp16 complex. Biological assays were performed to confirm this proposition. A cell-based assay for Mpro protease activity using a reverse-nanoluciferase (Rev-Nluc) reporter confirmed that 3b targets Mpro. These results open the way towards further hit-to-lead optimisations.

8.
Pharmaceutics ; 16(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276492

RESUMEN

Cancer is a global health burden and is one of the leading causes of death. Photodynamic therapy (PDT) is considered an alternative approach to conventional cancer treatment. PDT utilizes a light-sensitive compound, photosensitizers (PSs), light irradiation, and molecular oxygen (O2). This generates cytotoxic reactive oxygen species (ROS), which can trigger necrosis and/ or apoptosis, leading to cancer cell death in the intended tissues. Classical photosensitizers impose limitations that hinder their clinical applications, such as long-term skin photosensitivity, hydrophobic nature, nonspecific targeting, and toxic cumulative effects. Thus, nanotechnology emerged as an unorthodox solution for improving the hydrophilicity and targeting efficiency of PSs. Among nanocarriers, mesoporous silica nanoparticles (MSNs) have gained increasing attention due to their high surface area, defined pore size and structure, ease of surface modification, stable aqueous dispersions, good biocompatibility, and optical transparency, which are vital for PDT. The advancement of integrated MSNs/PDT has led to an inspiring multimodal nanosystem for effectively treating malignancies. This review gives an overview of the main components and mechanisms of the PDT process, the effect of PDT on tumor cells, and the most recent studies that reported the benefits of incorporating PSs into silica nanoparticles and integration with PDT against different cancer cells.

9.
Cureus ; 14(8): e28229, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36017482

RESUMEN

Background In this study, we aimed to determine the frequency of raised C-reactive protein (CRP) levels and their association with the severity of the disease. Methodology This descriptive cross-sectional study was conducted at the Shifa International Hospital, Islamabad, from June 2018 to December 2018 in the Department of Medicine. Patients attending the respiratory outpatient clinic in the Department of Medicine, Shifa International Hospital, Islamabad, with chronic obstructive pulmonary disease, meeting the sample selection criteria, were included in our study. A total of 104 patients were enrolled. All patients had plasma CRP levels measured, and forced expiratory volume in one second to forced vital capacity ratio was calculated to quantify the severity of the disease. We used SPSS version 26.0 (IBM Corp., Armonk, NY, USA) for data analysis. Results All patients with levels of hs-CRP greater than 3 mg/L had stage 3 or 4 chronic obstructive pulmonary disease (COPD) according to Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria, which accounted for 16.4% of the sample, while 81.7% of all patients suffering from COPD had levels greater than 1 mg/L. Only a small minority of patients, 1.9%, had normal high-sensitivity (hs)-CRP levels. The relationship between high levels of hs-CRP levels and advanced stages of COPD was statistically significant (p < 0.001). Conclusions The severity of COPD is directly related to the raised CRP levels, which can help in identifying these patients and managing them subsequently. It can be a useful indicator and a basis for high suspicion index and close follow-up for patients with high levels.

10.
Sci Rep ; 12(1): 490, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017530

RESUMEN

Based on the findings from the Phase III clinical trials of inactivated SARS COV-2 Vaccine, (BBIBP-CORV) emergency use authorization (EUA) was granted for the vaccine to frontline workers in the UAE. A prospective cohort study was conducted among frontline workers to estimate the incidence rate and risk of symptomatic COVID-19 infection 14 days after the second dose of inoculation with BBIBP-CORV inactivated vaccine. Those who received two doses of the BBIBP-CORV vaccine in the period from 14th of September 2020 (first dose) to 21st of December 2020 (second dose) were followed up for COVID-19 infections. 11,322 individuals who received the two-dose BBIBP-CORV vaccine were included and were followed up post the second dose plus fourteen days. The incidence rate of symptomatic infection was 0.08 per 1000-person days (95% CI 0.07, 0.10). The estimated absolute risk of developing symptomatic infection was 0.97% (95% CI 0.77%, 1.17%). The confirmed seroconversion rate was 92.8%. There were no serious adverse events reported and no individuals suffered from severe disease. Our findings show that vaccinated individuals are likely to remain protected against symptomatic infection or becoming PCR positive for SARS COV 2 following the second dose of the vaccination.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/diagnóstico , Vacunas de Productos Inactivados/administración & dosificación , Adulto , COVID-19/epidemiología , COVID-19/virología , Vacunas contra la COVID-19/efectos adversos , Ensayos Clínicos Fase III como Asunto , Femenino , Estudios de Seguimiento , Cefalea/etiología , Personal de Salud , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Estudios Prospectivos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Emiratos Árabes Unidos/epidemiología , Vacunas de Productos Inactivados/efectos adversos
11.
J Biomol Struct Dyn ; 40(17): 7815-7828, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-33749545

RESUMEN

COVID-19 also known as SARS-CoV-2 outbreak in late 2019 and its worldwide pandemic spread has taken the world by surprise. The minute-to-minute increasing coronavirus cases (>85 M) and progressive deaths (≈1.8 M) calls for finding a cure to this devastating pandemic. While there have been many attempts to find biologically active molecules targeting SARS-CoV-2 for treatment of this viral infection, none has found a way to the clinic yet. In this study, a 3-feature structure-based pharmacophore model was designed for SARS-CoV-2 main protease (MPro) that plays a vital role in the viral cellular penetration. High throughput virtual screening of the lead-like ZINC library was then performed to find a potent inhibitor employing the predesigned pharmacophore. In-silico pharmacokinetics/toxicity prediction study was subsequently applied towards the best hits. Finally, a 50 ns molecular dynamics simulation was carried out for the best hit and compared to the co-crystallized ligand where the hit compound displayed high binding and comparable interactions. The results identified new hits for SARS-CoV-2 MPro inhibition showing good docking score, pharmacokinetics and toxicity profile, drug-likeness, high binding energy in addition to a promising synthetic accessibility. Identifying new small compounds as potential leads for inhibiting SARS-CoV-2 is a very important step towards designing a synthesizing of promising drug candidates.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/química , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2 , Zinc
12.
Cureus ; 14(12): e32824, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36699800

RESUMEN

Herniation of abdominal contents through the diaphragm into the thoracic cavity can occur after blunt abdominal injury, resulting in a permanently acquired diaphragmatic hernia. Their clinical presentation is varied and non-specific, which can go unnoticed for a long duration. A 27-year-old male presented with right upper quadrant pain and right-sided pleuritic chest pain for the past 20 days. His past medical history included high-impact blunt trauma a few years back. His workup revealed a right-sided diaphragmatic hernia through which the gallbladder had herniated into the thoracic cavity, along with liver and hepatic flexure of the colon. The gallbladder contained gallstones which were the cause of his symptoms. The patient was managed successfully with a laparotomy and repair of the diaphragmatic hernia and cholecystectomy. After blunt abdominal trauma, right-sided diaphragmatic injury is less common because most of the trauma is absorbed by the liver, providing a protective effect. The sign and symptoms of acquired diaphragmatic hernia lack sensitivity and specificity, due to which many cases remain undiagnosed and are incidentally picked up on chest auscultation where bowel sounds are audible in the chest, and breath sounds on the affected side are absent, whereas patients have complaints of respiratory difficulty and recurrent pneumonia. Chest and abdominal imagining in the form of chest X-rays and abdominal ultrasound can help diagnose. The case we present was a unique presentation of acquired right-sided diaphragmatic hernia resulting in herniation of the gallbladder in the right-sided chest and leading to acute cholecystitis. The treatment modality is surgical repair of the diaphragm. Any patient presenting with unusual symptoms of pneumonia or abdominal pain should be investigated, especially patients with a history of blunt abdominal trauma.

13.
Molecules ; 26(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34684755

RESUMEN

There have been more than 150 million confirmed cases of SARS-CoV-2 since the beginning of the pandemic in 2019. By June 2021, the mortality from such infections approached 3.9 million people. Despite the availability of a number of vaccines which provide protection against this virus, the evolution of new viral variants, inconsistent availability of the vaccine around the world, and vaccine hesitancy, in some countries, makes it unreasonable to rely on mass vaccination alone to combat this pandemic. Consequently, much effort is directed to identifying potential antiviral treatments. Marine brominated tyrosine alkaloids are recognized to have antiviral potential. We test here the antiviral capacity of fourteen marine brominated tyrosine alkaloids against five different target proteins from SARS-CoV-2, including main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and non-structural protein 10 (nsp10) (PDB ID: 6W4H). These marine alkaloids, particularly the hexabrominated compound, fistularin-3, shows promising docking interactions with predicted binding affinities (S-score = -7.78, -7.65, -6.39, -6.28, -8.84 Kcal/mol) for the main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and non-structural protein 10 (nsp10) (PDB ID: 6W4H), respectively, where it forms better interactions with the protein pockets than the native interaction. It also shows promising molecular dynamics, pharmacokinetics, and toxicity profiles. As such, further exploration of the antiviral properties of fistularin-3 against SARS-CoV-2 is merited.


Asunto(s)
Alcaloides/química , SARS-CoV-2/metabolismo , Alcaloides/aislamiento & purificación , Alcaloides/uso terapéutico , Antivirales/química , Antivirales/metabolismo , Antivirales/uso terapéutico , Sitios de Unión , COVID-19/virología , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Halogenación , Humanos , Isoxazoles/química , Isoxazoles/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Relación Estructura-Actividad , Tirosina/análogos & derivados , Tirosina/química , Tirosina/metabolismo , Tratamiento Farmacológico de COVID-19
14.
Biomolecules ; 11(3)2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808721

RESUMEN

The huge global expansion of the COVID-19 pandemic caused by the novel SARS-corona virus-2 is an extraordinary public health emergency. The unavailability of specific treatment against SARS-CoV-2 infection necessitates the focus of all scientists in this direction. The reported antiviral activities of guanidine alkaloids encouraged us to run a comprehensive in silico binding affinity of fifteen guanidine alkaloids against five different proteins of SARS-CoV-2, which we investigated. The investigated proteins are COVID-19 main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and a non-structural protein (nsp10) (PDB ID: 6W4H). The binding energies for all tested compounds indicated promising binding affinities. A noticeable superiority for the pentacyclic alkaloids particularly, crambescidin 786 (5) and crambescidin 826 (13) has been observed. Compound 5 exhibited very good binding affinities against Mpro (ΔG = -8.05 kcal/mol), nucleocapsid phosphoprotein (ΔG = -6.49 kcal/mol), and nsp10 (ΔG = -9.06 kcal/mol). Compound 13 showed promising binding affinities against Mpro (ΔG = -7.99 kcal/mol), spike glycoproteins (ΔG = -6.95 kcal/mol), and nucleocapsid phosphoprotein (ΔG = -8.01 kcal/mol). Such promising activities might be attributed to the long ω-fatty acid chain, which may play a vital role in binding within the active sites. The correlation of c Log P with free binding energies has been calculated. Furthermore, the SAR of the active compounds has been clarified. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) studies were carried out in silico for the 15 compounds; most examined compounds showed optimal to good range levels of ADMET aqueous solubility, intestinal absorption and being unable to pass blood brain barrier (BBB), non-inhibitors of CYP2D6, non-hepatotoxic, and bind plasma protein with a percentage less than 90%. The toxicity of the tested compounds was screened in silico against five models (FDA rodent carcinogenicity, carcinogenic potency TD50, rat maximum tolerated dose, rat oral LD50, and rat chronic lowest observed adverse effect level (LOAEL)). All compounds showed expected low toxicity against the tested models. Molecular dynamic (MD) simulations were also carried out to confirm the stable binding interactions of the most promising compounds, 5 and 13, with their targets. In conclusion, the examined 15 alkaloids specially 5 and 13 showed promising docking, ADMET, toxicity and MD results which open the door for further investigations for them against SARS-CoV-2.


Asunto(s)
Alcaloides/química , Antivirales/química , Proteínas de la Nucleocápside de Coronavirus/química , Poríferos/química , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , Animales , Antivirales/farmacología , Antivirales/toxicidad , Barrera Hematoencefálica , Cristalografía por Rayos X , Ligandos , Glicoproteínas de Membrana/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fosfoproteínas/química , Inhibidores de Proteasas/química , Ratas , Programas Informáticos , Proteasas Virales/química
16.
Sensors (Basel) ; 20(12)2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32575909

RESUMEN

Detecting cognitive profiles is critical to efficient adaptive learning systems that automatically adjust the content delivered depending on the learner's cognitive states and skills. This study explores electroencephalography (EEG) and facial expressions as physiological monitoring tools to build models that detect two cognitive states, namely, engagement and instantaneous attention, and three cognitive skills, namely, focused attention, planning, and shifting. First, while wearing a 14-channel EEG Headset and being videotaped, data has been collected from 127 subjects taking two scientifically validated cognitive assessments. Second, labeling was performed based on the scores obtained from the used tools. Third, different shallow and deep models were experimented in the two modalities of EEG and facial expressions. Finally, the best performing models for the analyzed states are determined. According to the used performance measure, which is the f-beta score with beta = 2, the best obtained results for engagement, instantaneous attention, and focused attention are EEG-based models with 0.86, 0.82, and 0.63 scores, respectively. As for planning and shifting, the best performing models are facial expressions-based models with 0.78 and 0.81, respectively. The obtained results show that EEG and facial expressions contain important and different cues and features about the analyzed cognitive states, and hence, can be used to automatically and non-intrusively detect them.


Asunto(s)
Cognición , Electroencefalografía , Expresión Facial , Reconocimiento de Normas Patrones Automatizadas , Atención , Señales (Psicología) , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA