Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(22): 29098-29111, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38780083

RESUMEN

In this work, an injectable in situ depot-forming lipidic lyotropic liquid crystal (L3C) system is developed to codeliver a precisely synchronized combination of chemotherapeutics intratumorally. The developed L3C system is composed of amphiphilic lipids and surfactants, including monoolein, phosphatidylcholine, tocopherol acetate, and d-α-tocopherol polyethylene glycol 1000 succinate. Owing to its amphiphilic nature, the developed formulation can coaccommodate both hydrophobic and hydrophilic chemotherapeutic moieties simultaneously. The study presents a proof of concept by designing a combination chemotherapy regimen in vitro and demonstrating its in vivo translation using doxorubicin and paclitaxel as model hydrophilic and hydrophobic drug moieties, respectively. The synchronized combination of the two chemotherapeutics with maximum synergistic activity was identified, coloaded in the developed L3C system at predefined stoichiometric ratios, and evaluated for antitumor efficacy in the 4T1 breast tumor model in BALB/c mice. The drug-loaded L3C formulation is a low-viscosity injectable fluid with a lamellar phase that transforms into a hexagonal mesophase depot system upon intratumoral injection. The drug-loaded depot system locally provides sustained intratumoral delivery of the chemotherapeutics combination at their precisely synchronized ratio for over a period of one month. Results demonstrate that the exposure of the tumor to the precisely synchronized intratumoral chemotherapeutics combination via the developed L3C system resulted in significantly higher antitumor activity and reduced cardiotoxicity compared to the unsynchronized combination chemotherapy or the synchronized but uncoordinated drug delivery administered by a conventional intravenous route. These findings demonstrate the potential of the developed L3C system for achieving synchronized codelivery of the chemotherapeutics combination intratumorally and improving the efficacy of combination chemotherapy.


Asunto(s)
Doxorrubicina , Cristales Líquidos , Ratones Endogámicos BALB C , Animales , Cristales Líquidos/química , Ratones , Doxorrubicina/química , Doxorrubicina/farmacología , Femenino , Paclitaxel/química , Paclitaxel/farmacología , Paclitaxel/farmacocinética , Línea Celular Tumoral , Humanos , Glicéridos/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacología , Portadores de Fármacos/química
2.
ACS Omega ; 8(47): 44545-44557, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38046289

RESUMEN

Extremely short half-life therapeutic molecule nitric oxide (NO) plays significant roles in the functioning of various physiological and pathological processes in the human body, whereas doxorubicin hydrochloride (DOX) is a clinically important anticancer drug widely used in cancer chemotherapy. Thus, the intracellular delivery of these therapeutic molecules is tremendously important to achieve their full potential. Herein, we report a novel approach for the development of highly water-dispersible magnetic nanocarriers for codelivery of NO and DOX. Primarily, bifunctional magnetic nanoparticles enriched with carboxyl and thiol groups were prepared by introducing cysteine onto the surface of citrate-functionalized Fe3O4 nanoparticles. DOX was electrostatically conjugated onto the surface of bifunctional nanoparticles via carboxyl moieties, whereas the thiol group was further nitrosated to provide NO-releasing molecules. The developed magnetic nanocarrier exhibited good aqueous colloidal stability, protein resistance behavior, and high encapsulation efficacy for NO (65.5%) and DOX (85%), as well as sustained release characteristics. Moreover, they showed superior cytotoxicity toward cancer (A549 and MCF-7) cells via apoptosis induction over normal (WI26VA4) cells. Specifically, we have developed magnetic nanocarriers having the capability of dual delivery of NO and DOX, which holds great potential for combinatorial cancer treatment.

3.
PNAS Nexus ; 2(3): pgad031, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36909823

RESUMEN

The Development of reliable and field-compatible detection methods is essential to monitoring and controlling the spread of any global pandemic. We herein report a novel anti-RNA:DNA hybrid (anti-RDH) antibody-based biosensor for visual, colorimetric lateral flow assay, using gold nanoparticles, coupled with transcription-mediated-isothermal-RNA-amplification (TMIRA) for specific and sensitive detection of viral RNA. We have demonstrated its utility for SARS-CoV-2 RNA detection. This technique, which we have named RDH-LFA (anti-RNA:DNA hybrid antibody-based lateral flow assay), exploits anti-RDH antibody for immunocapture of viral RNA hybridized with specific DNA probes in lateral flow assay. This method uses biotinylated-oligonucleotides (DNAB) specific to SARS-CoV-2 RNA (vRNA) to generate a vRNA-DNAB hybrid. The biotin-tagged vRNA-DNAB hybrid molecules bind to streptavidin conjugated with gold nanoparticles. This hybrid complex is trapped by the anti-RDH antibody immobilized on the nitrocellulose membrane resulting in pink color signal leading to visual naked-eye detection in 1 minute. Combining RDH-LFA with isothermal RNA amplification (TMIRA) significantly improves the sensitivity (LOD:10 copies/µl) with a total turnaround time of an hour. More importantly, RDH-LFA coupled with the TMIRA method showed 96.6% sensitivity and 100% specificity for clinical samples when compared to a commercial gold standard reverse-transcription quantitative polymerase-chain-reaction assay. Thus, the present study reports a rapid, sensitive, specific, and simple method for visual detection of viral RNA, which can be used at the point-of-care without requiring sophisticated instrumentation.

4.
Mol Pharm ; 19(3): 831-842, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35191706

RESUMEN

To address the need for localized chemotherapy against unresectable solid tumors, an injectable in situ depot-forming lipidic lyotropic liquid crystal system (L3CS) is explored that can provide spatiotemporal control over drug delivery. Although liquid crystals have been studied extensively before but their application as an injectable intratumoral depot system for locoregional chemotherapy has not been explored yet. The developed L3CS in the present study is a low-viscosity injectable fluid having a lamellar phase, which transforms into a hexagonal mesophase depot system on subcutaneous or intratumoral injection. The transformed depot system can be preprogrammed to provide tailored drug release intratumorally, over a period of one week to one month. To establish the efficacy of the developed L3CS, doxorubicin is used as a model drug. The drug release mechanism is studied in detail both in vitro and in vivo, and the efficacy of the developed system is investigated in the murine 4T1 tumor model. The direct intratumoral injection of the L3CS provided localized delivery of doxorubicin inside the tumor and restricted its access within the tumor only for a sustained period of time. This led to an over 10-fold reduction in tumor burden, reduced cardiotoxicity, and a significant increase in the median survival rate, compared to the control group. The developed L3CS thus provides an efficient strategy for localized chemotherapy against unresectable solid tumors with a great degree of spatial and temporal control over drug delivery.


Asunto(s)
Cristales Líquidos , Animales , Cardiotoxicidad , Doxorrubicina , Liberación de Fármacos , Lípidos , Ratones
5.
Int J Pharm ; 600: 120403, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33711467

RESUMEN

Localized drug delivery with sustained elution characteristics from nanocarrier coated stents represents a viable therapeutic approach to circumvent concerns related to coronary stent therapy. We fabricated a Sirolimus (SRL) and Bivalirudin (BIV) releasing nanoparticles (NPs) coated stent for concurrent mitigation of vascular restenosis and acute stent thrombosis. SRL NPs were prepared by nanoprecipitation method whereas the BIV vesicles were generated using hydrophobic ion pair approach followed by micellization phenomenon. MTT assay and confocal microscopic analysis indicated superior anti-proliferative activity and higher cellular uptake of SRL NPs into human coronary artery smooth muscle cells, respectively. DSC and ATR-FTIR techniques confirmed the formation of complex between BIV and phosphatidylglycerol via some weak physical interactions. More than 2 fold rise in log P value was obtained for DSPG-BIV at 3:1 M ratio compared with native BIV solution. The SAXS analysis indicated formation of oligolamellar vesicles of DSPG-BIV complex which was preferentially entrapped into lipophilic lamellae of vesicles. APTT, PT, and TT tests revealed that the BIV vesicles caused significant prolongation of clotting time compared to native BIV solution. The SEM analysis showed uniform and defect free stent coating. In vitro release study demonstrated that SRL and BIV were eluted in a sustained manner from coated stents.


Asunto(s)
Reestenosis Coronaria , Stents Liberadores de Fármacos , Trombosis , Reestenosis Coronaria/prevención & control , Hirudinas , Humanos , Fragmentos de Péptidos , Proteínas Recombinantes , Dispersión del Ángulo Pequeño , Sirolimus , Stents , Trombosis/prevención & control , Difracción de Rayos X
6.
Colloids Surf B Biointerfaces ; 202: 111683, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33721804

RESUMEN

Exemestane (EXE), a drug used for the treatment of breast cancer, has limited aqueous solubility of 0.08 mg/mL and log P∼ 4.22. The only available marketed formulation in form of tablets possess limitations of poor oral absorption (∼ 42 %), low solubility, extensive hepatic metabolism and numerous adverse effects due to its peripheral absorption. In order to address these issues, an alternative route of topical application is attempted through a lamellar liquid crystal based formulation. Pluronic® was used as stabilizer due to its higher surface activity and gelling properties. The solubility enhancement of EXE was achieved using liquid crystal formulation. We have investigated the effect of concentration of oil, Smix (surfactant - cosurfactant mixture) and EXE on lattice parameter, rheology and drug release for various combinations of the formulation. The small angle x-ray scattering (SAXS) measurement demonstrated an evidence of a lamellar structure with lattice parameter ∼15 nm, which increases with corresponding increase in oil and EXE due to increase in hydrophobic interactions leading to an expansion of lamella. The inter lamellar distance decreases at higher surfactant concentration, due to the distribution of the same amount of oil and drug within larger concentration of surfactant molecules. The rheology measurement exhibited gel like properties at low shear rate indicating soft gel formation, which converts to Newtonian type flowing liquid at higher shear rate. At constant Smix with increasing oil content, the viscosity decreases, which is attributed to the dilution of the lamellar structures with oil. The temperature sweep rheology reveals a change in the viscosity near physiological temperature, which may be attributed to the structural transition of lamellae. The formulation remains gel like at room temperature, which aids in proper application to skin and converts it to free flowing liquid above 37 °C. The invitro drug release of optimized formulation for 24 h was ∼ 38 % at 37 °C, which increased to 50 % at 42 °C. Accordingly, this formulation containing thermoresponsive lamellar liquid crystal gels of EXE represents a viable option for hyperthermia induced enhanced drug release. The characteristic and advantageous features offered by this formulation includes improved bioavailability of EXE due to enhanced solubility, permeability and absorption.


Asunto(s)
Cristales Líquidos , Androstadienos , Reología , Dispersión del Ángulo Pequeño , Solubilidad , Difracción de Rayos X
7.
ACS Appl Bio Mater ; 4(8): 6005-6015, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35006928

RESUMEN

Cationic liposomes have become an attractive tool to deliver genes and interfering RNA into cells. Herein, we report the application of spontaneously formed cationic vesicles in mixtures of lecithin and cationic amphiphiles for efficient transfection of plasmid DNA and siRNA into cells. The average hydrodynamic diameter of the phospholipid vesicles was modulated by changing the ratio of dihexadecyldimethylammonium bromide (DDAB) to phospholipid in the vesicles. The vesicles were characterized by dynamic light scattering, ζ potential, and small-angle X-ray scattering. Depending on the ratio of DDAB to phospholipid, the average size of the vesicles can be varied in the range of 150-300 nm with a ζ potential of +40 mV. The ability of these cationic vesicles to form lipoplexes upon binding with pDNA is demonstrated by ζ potential, isothermal titration calorimetry, gel retardation, and DNase I digestion assay. The enthalpy of binding between pDNA and cationic liposome was found to be -5.7 (±0.8) kJ/mol. The cellular uptake studies of lipoplexes observed by fluorescence microscopy confirmed good transfection efficiency of DDAB liposomes in MCF-7 and HeLa cells. The fluorescent imaging analysis showed effective gene delivery and expression of green fluorescent protein. In addition, the formulation has demonstrated an ability to deliver small interfering RNA (siBRD4) for efficient gene silencing as seen by a significant decrease in BRD4 protein level in siBRD4-treated cells. Comparison of the transfection efficiency of different formulations suggests that DDAB-rich mixed phospholipid vesicles with size <200 nm are better than large size vesicles for improved endocytosis and gene expression.


Asunto(s)
Lecitinas , Liposomas , Cationes/química , Proteínas de Ciclo Celular/genética , ADN/genética , Células HeLa , Humanos , Liposomas/química , Proteínas Nucleares/genética , Plásmidos/genética , Compuestos de Amonio Cuaternario , ARN Interferente Pequeño/genética , Factores de Transcripción/genética , Transfección
8.
Mater Sci Eng C Mater Biol Appl ; 117: 111272, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32919636

RESUMEN

Lanreotide peptide (LP) has high affinity to somatostatin receptors like SSTR2 and is commonly used in the treatment of neuro-endocrine tumors. The main objective of this study is to target gold nanoparticles (AuNPs) towards SSTR2-positive cancer cells using lanreotide peptide (LP) as the targeting agent for enhanced tumor uptake and antitumor activity. pH mediated changes in the surface potential of LP and AuNP is used to prepare electrostatically bound AuNP-LP complexes. AuNP-LP complex formation was demonstrated by UV-Visible spectroscopy, surface potential, dynamic light scattering (DLS), small angle X-ray scattering and HR-TEM. Confocal microscopy and flow cytometric studies show that AuNP-LP complex has higher cellular uptake in SSTR2 expressed cancer cells (MCF-7 and AR42J) than in CHO cells. The enhanced cellular uptake of LP coated AuNPs lead to ~1.5 to 2-fold GSH depletion and enhanced ROS generation in MCF-7 cells. The preferential cytotoxicity of the AuNP-LP complex towards MCF-7 and AR42J cells, as revealed by MTT assay, is consistent with the increased cellular uptake. Our studies demonstrate that LP coated AuNP can be used as an effective platform to selectively target SSTR2 positive cancer cells for combination therapy approaches involving gold nanoparticles.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Animales , Células CHO , Cricetinae , Cricetulus , Oro , Humanos , Péptidos , Péptidos Cíclicos , Somatostatina/análogos & derivados
9.
Int J Biol Macromol ; 164: 3084-3097, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32835797

RESUMEN

Development of biologics and biosimilars involves extensive physical and structural characterization, which underlines the further course of its implementation. These characterization techniques require considerable standardization and are labor intensive. It is therefore, important to have an immediate, independent and affordable characterization strategy that may meet the regulatory guidelines. In this study, we have compared the standard biophysical characterization of an anti-CD 20 antibody with characterization by small angle x ray scattering (SAXS). Aggregation of this mAb was analyzed using standard techniques like size exclusion HPLC, dynamic light scattering and sedimentation velocity - analytical ultracentrifugation, whereas structure analysis was conducted using mass spectrometry, circular dichroism spectroscopy and fluorescence spectroscopy. Our results demonstrated that the inferences about the state of mAb aggregation and its structure deduced using the standard approaches were comparable to the data interpreted using SAXS. The radius of gyration and the P(r) distribution plot obtained using the SAXS scattering data allowed analysis of aggregation and conformation of mAb via a single experiment. Thus, SAXS can be used as an independent technique to complement orthogonal analysis for determining the aggregation profile and structure of mAbs.


Asunto(s)
Biosimilares Farmacéuticos/química , Rituximab/química , Dicroismo Circular , Concentración de Iones de Hidrógeno , Conformación Proteica , Dispersión del Ángulo Pequeño , Espectrometría de Fluorescencia , Difracción de Rayos X
10.
J Phys Chem B ; 124(16): 3418-3427, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32239938

RESUMEN

The structure of core-shell micelles formed by nonionic surfactant Triton X-100 (TX-100) in a supercooled glucose-urea melt is investigated by contrast variation small-angle X-ray scattering (SAXS), small angle neutron scattering (SANS), and HR-TEM. Cooling a molten mixture of glucose-urea (weight ratio of 3:2) to room temperature yields a supercooled solvent without crystallization that can be used for trapping micelles of TX-100. By use of a combination of water and glucose-urea mixture at different proportions as solvent for micellization, the scattering length density (SLD) of the solvent can be tuned to match the shell contrast of the micelles. A systematic analysis of SAXS and SANS data with different SLD of solvent permits a quantitative evaluation of electron density profile of micelles in different matrices. The core of TX-100 micelles shows significant swelling in glucose-urea melt, as compared to that in water. The dimension and morphology of micelles were evaluated by scattering techniques and HR-TEM. Dynamic light scattering (DLS) studies suggest that, unlike micelles in water, the diffusion of micelles in supercooled glucose-urea melt decreased by several orders of magnitude.

11.
ACS Omega ; 4(7): 11728-11736, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31460279

RESUMEN

We report the development of pH-labile ascorbic acid-coated magnetic nanocarriers (AMNCs) for effective delivery of the anticancer drug doxorubicin hydrochloride (DOX) to tumor cells. The uniqueness of this drug delivery system lies in the covalent conjugation of DOX through carbamate and hydrazone bonds, resulting in a slow and sustained drug release profile at different environmental acidities. X-ray diffraction and transmission electron microscopy analyses reveal the formation of crystalline single-phase Fe3O4 nanoparticles with an average size of 10 nm. The changes in the interfacial characteristics of the nanocarriers and the presence of organic coatings are probed by infrared spectroscopy, dynamic light scattering, zeta potential, and thermogravimetric measurements. AMNCs show high colloidal stability in aqueous and cell culture media and possess good magnetic field responsivity and protein resistance characteristics. The drug-loaded nanocarriers exhibited sustained pH-triggered release of drug molecules in acidic mediums, substantial cellular internalization, and significant toxicity toward the proliferation of mouse skin fibrosarcoma (WEHI-164), human breast cancer (MCF-7), and human lung cancer (A549) cells. However, it showed significantly lower toxicity in human normal lung (WI26VA) cells. Overall, these results suggest a pH-sensitive drug release of nanoformulations, which showed selective toxicity to tumor than normal cells.

12.
Langmuir ; 35(30): 9867-9877, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31271288

RESUMEN

Sodium dodecyl sulfate (SDS) is a well-known anionic surfactant that forms micelles in various solvents including supercooled sugar-urea melt. Here, we explore the application of contrast variation small-angle X-ray scattering (SAXS) in discerning the structure and interactions of SDS micelles in aqueous solution and in a room-temperature supercooled solvent. The SAXS patterns can be analyzed in terms of a core-shell ellipsoid model. For aqueous SDS micelles, at low volume fractions, the features due to intermicellar interaction, S(q), in the SAXS pattern are poorly resolved because of the prominent contribution from shell scattering. Increasing the electron density of the solvent by the addition of the urea or fructose-urea mixture (at a weight ratio of 6:4) permits the systematic variation of shell scattering without influencing the structure drastically. For a 10% solution of SDS in water, the contribution from the shell can be completely masked by the addition of 40% urea or fructose-urea mixture. The fructose-urea mixture is a preferred additive as it can vary the scattering length density over a wide range and serves as a matrix to form supercooled micelles. The structural parameters of micelles in supercooled fructose-urea melt are obtained from contrast variation SAXS, small-angle neutron scattering, and high-resolution transmission electron microscopy.

13.
Langmuir ; 31(1): 3-12, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25050712

RESUMEN

Dynamic light scattering (DLS) has evolved as a fast, convenient tool for particle size analysis of noninteracting spherical colloids. In this historical review, we discuss the basic principle, data analysis, and important precautions to be taken while analyzing colloids using DLS. The effect of particle interaction, polydispersity, anisotropy, light absorption, and so forth, on measured diffusion coefficient is discussed. New developments in this area such as diffusing wave spectroscopy, particle tracking analysis, microrheological studies using DLS, and so forth, are discussed in a manner that can be understood by a beginner.

14.
Langmuir ; 30(48): 14406-15, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25380316

RESUMEN

The isotropic micellar state of Pluronic P123 in the presence and absence of N-alkylpyridinium halide ionic liquids (ILs) is investigated using SANS, DLS, and (1)H NMR studies. The micellar structural parameters are obtained as a function of variation in alkyl chain length, anions, and concentrations of ILs by fitting the SANS scattering data with a model composed of core-shell form factor and a hard sphere structure factor of interaction. Addition of ILs decreases the micellar core, aggregation number, and hard sphere radius of P123 micelles. From quantitative analysis, we determined the amount of solvent (D2O + IL) present inside the core and the core-shell interface along with cationic head groups. This is further supported by monitoring interaction between ILs and polymer micelle using (1)H NMR spectroscopy. The results are discussed and explained as a function of concentration of C8PyCl, alkyl chain length, and anions of N-alkylpyridinium halides.

15.
Nanomedicine (Lond) ; 6(8): 1309-25, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22026377

RESUMEN

AIMS: In the present investigation, the feasibility of fabricating novel self-assembled cationic nanocarriers (LeciPlex) containing cetyltrimethylammonium bromide (CTAB) or didodecyldimethylammonium bromide (DDAB) and soybean lecithin using pharmaceutically acceptable biocompatible solvents such as 2-Pyrrolidone (Soluphor P) and diethyleneglycol monoethyl ether (Transcutol) was established. MATERIALS & METHODS: The interaction between DDAB/CTAB and soybean lecithin in the nanocarriers was confirmed by differential scanning calorimetry and in vitro antimicrobial studies. The positive charge on the nanocarriers was confirmed by zeta potential analysis. RESULTS: Transmission electron microscopy analysis could not reveal sufficient information regarding the internal structure of the nanocarriers, whereas cryotransmission electron microscopy studies indicated that these novel nanocarriers have unilamellar structure. Small-angle neutron scattering studies confirmed interaction of cationic surfactant (DDAB) and lecithin in the nanocarriers and confirmed the presence of unilamellar nanostructures. CONCLUSION: Various hydrophobic drugs could be encapsulated in the CTAB/DDAB-based lecithin nanocarriers (CTAB-LeciPlex or DDAB-LeciPlex) irrespective of their difference in log p-values. In vitro antimicrobial studies on triclosan-loaded LeciPlex confirmed entrapment of triclosan in the nanocarriers. The ability of CTAB-LeciPlex and DDAB-LeciPlex to condense plasmid DNA was established using agarose gel electrophoresis. DDAB-LeciPlex could successfully transfect pDNA in HEK-293 cells indicating potential in gene delivery.


Asunto(s)
Portadores de Fármacos/química , Lecitinas/química , Nanoestructuras/química , Línea Celular , Humanos , Nanotecnología/métodos , Compuestos de Amonio Cuaternario/química , Transfección
16.
Biochimie ; 92(7): 869-79, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20362640

RESUMEN

Thorium-232 ((232)Th), a natural radionuclide from the actinide family, is abundantly present in monazite and other ores. It is used as one of the prime fuel materials in nuclear industry and may pose an exposure risk to nuclear workers and members of the public. Human erythrocytes, as a classical cellular membrane model, were coincubated with (232)Th in order to elucidate whether this naturally occurring important radionuclide produced perturbations to cell membrane. Present study revealed that erythrocytes underwent aggregation or lysis depending on the ratio of (232)Th to cell. Scanning electron micrographs showed that erythrocytes transformed into equinocytes and/or spherocytes after (232)Th treatment. Further examination of erythrocyte by atomic force microscopy suggested significant increase in surface roughness after (232)Th treatment. Experiments on neuraminidase treated and/or anti-GpA antibody blocked erythrocytes suggested significant role of membrane sialic acid and glycophorin A (GpA) protein in aggregation or hemolytic effects of (232)Th. Further results showed that (232)Th caused hemolysis by colloid osmotic mechanism, as evidenced by potassium efflux, osmotic protection and osmotic fragility studies. Osmoprotection experiments indicated that hemolysis get elicited through the formation of membrane pores of approximately 2.0 nm in size. Hemolysis studies in presence of inhibitors (TEA, bumetanide, DIDS and amiloride) revealed the role of K(+) channel, Na(+)/K(+)/2Cl(-) channel, Cl(-)/HCO(3)(-) anion exchanger and Na(+)/H(+) antiporter in (232)Th induced erythrolysis. Presence of non-diffusible cation (N-methyl d-glucasamine) or anion (gluconate) in erythrocyte suspending medium further confirm the role of Na(+) and Cl(-) influx in hemolytic effect of (232)Th. These findings provide significant insight in structural, biochemical and osmotic toxic effects of (232)Th on human erythrocytes.


Asunto(s)
Membrana Celular/metabolismo , Agregación Eritrocitaria/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Glicoforinas/metabolismo , Hemólisis/efectos de los fármacos , Ácido N-Acetilneuramínico/metabolismo , Torio/toxicidad , Adulto , Membrana Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Eritrocitos/citología , Eritrocitos/metabolismo , Glicoforinas/química , Humanos , Transporte Iónico/efectos de los fármacos , Ósmosis/efectos de los fármacos , Fragilidad Osmótica/efectos de los fármacos , Potasio/metabolismo
17.
J Colloid Interface Sci ; 342(1): 83-92, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19939405

RESUMEN

Controlling the morphological characteristics of micellar solutions is important for surfactant performance and for achieving desired properties. In this work we study how monovalent anions of the lyotropic series affect micellization, micellar transitions, and micellar growth of the cationic surfactant N-cetyl pyridinium chloride (CPyCl), with the aim of achieving a tool to methodically tune these self-assembly characteristics. For the first time, a set of ions of the Hofmeister series were studied by combining indirect (surface tension, conductivity, optical absorption, viscosity, dynamic light scattering) and direct-imaging cryogenic-transmission electron microscopy (cryo-TEM). Following recent literature on anionic surfactants, we considered the pyridinium headgroup as a chaotropic cation, interacting with cosmotrope and chaotrope anions (Cl(-), Br(-), NO(3)(-), ClO(3)(-)). We show that the micelles' structure is strongly influenced by both the nature and concentration of added anions and their location in the lyotropic series, but the lyotropic number by itself cannot explain all the effects measured. Especially interesting was the relatively small effect of the chlorate ion on the CMC, but its large effect on micellar transition and growth. We further test the influence of a hydrotrope on the first and second CMC and micellar growth, and compare it with the data obtained with the inorganic salts.


Asunto(s)
Aniones/química , Cetilpiridinio/química , Micelas , Tensoactivos/química , Bromuros/química , Fenómenos Químicos , Cloratos/química , Microscopía por Crioelectrón , Microscopía Electrónica de Transmisión , Nitratos/química , Cloruro de Sodio/química , Compuestos de Sodio/química , Salicilato de Sodio/química , Tensión Superficial
18.
Langmuir ; 21(8): 3334-7, 2005 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-15807571

RESUMEN

The crystal structure and growth mechanism of silver nanorods prepared by a seed-mediated surfactant method using the cationic surfactant cetyltrimethylammonium tosylate (CTAT) and its wormlike micelles are characterized by conventional and high-resolution transmission electron microscopy. Depending on the nanorod orientations, two types of electron diffraction patterns are obtained from a truncated decahedral structure consisting of five crystal units packing along [111] twining planes with five [111] planes on each end and five circumferential [001] side surfaces parallel to a <110> longitudinal direction. High-resolution images of the nanorods and the corresponding Fourier transform patterns confirm the results from the morphological and diffraction analyses. The silver nanorods grow only from multiply twinned decahedral seeds, and the high selectivity of surfactant attachment results in a barrier to the transfer of silver atoms from the solution to the circumferential [100] planes. Blockage of circumferential growth causes the aspect ratio of the rod to grow.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA