Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
RSC Adv ; 14(40): 29330-29343, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39285882

RESUMEN

This research explores the potential of encapsulating thyme essential oil (TEO) and thymol (TH) into quaternized chitosan nanocapsules to combat SARS-CoV-2. Initially, the bioactive materials, TH and TEO, were extracted from Thymus vulgaris and then structurally and phytochemically characterized by spectral and GC-MS analyses. Meanwhile, O-quaternized ultrasonic-mediated deacetylated chitosan (QUCS) was successfully synthesized and characterized. Lastly, nanobiocomposites (NBCs; NBC1 and NBC2) were fabricated using QUCS as a scaffold to encapsulate either TEO or TH, with the mediation of Tween 80. By encapsulating these bioactive materials, we aim to enhance their efficacy and targeted delivery, bioavailability, stability, and anti-COVID properties. The new NBCs were structurally, morphologically, and physically characterized. Incorporating TEO or TH into QUCS significantly increased ZP values to ±53.1 mV for NBC1 and ±48.2 mV for NBC2, indicating superior colloidal stability. Interestingly, Tween 80-QUCS provided outstanding packing and release performance, with entrapment efficiency (EE) and loading capacity (LC) values of 98.2% and 3.7% for NBC1 and 83.7% and 1.9% for NBC2. The findings of in vitro antiviral studies not only highlight the potential of these nanobiocomposites as potential candidates for anti-COVID therapies but also underscore their selectivity in targeting SARS-CoV-2.

3.
RSC Adv ; 14(39): 28555-28568, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39247509

RESUMEN

Recently, molecular hybrids of two or more active pharmacophores have shown promise for designing and synthesizing anticancer drugs. Herein, a new multifunctional hybrid (PAHMQ), combining azobenzene and quinoline pharmacophores, and its M(ii) complexes (MPAHMQ) have been successfully developed and structurally characterized. The MTT assay revealed CuBHTP as the most efficient and safe breast cancer treatment, with an IC50 of 11.18 ± 0.39 µg mL-1 and a high selectivity index (SI) of 5.63 for cancer MCF-7 cells over healthy MCF10A cells. Moreover, the CuPAHMQ-treated MCF-7 cells experience a dramatic impact with regard to key apoptotic markers, including an increase in P53 and Bax expression, with a decrease in Bcl-2 expression levels compared to the untreated MCF-7 cells. Additionally, CuPAHMQ effectively halted the growth and division of MCF-7 cells by inducing cell cycle arrest in the crucial G1 and S phases, ultimately inhibiting both Topo II activity and cell proliferation. Molecular docking investigations validated the CuPAHMQ complex's groove binding and topoisomerase II binding, establishing it as a potent anticancer drug.

4.
J Fluoresc ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976089

RESUMEN

The diagnosis of prostate cancer has been evolving in the current decade, with expected mortality rates of 499,000 death by the year 2030. Apalutamide (APL) has been approved in 2018 as the first drug for the controlling of prostate cancer. APL significant success warrantied its high global sales, which are expected to surpass 58% of segment market sales (together with another drug; enzalutamide). Therefore, new, fast and environmentally friendly analytical methods are required for its determination for the quality control and biological monitoring purposes. The proposed research designs and evaluates the first fluorimetric approach based on novel porous green boron-doped carbon quantum dots (B@CDs) for the determination of APL in biopharmaceutical matrices. The synthetic approach has high quantum yield (31.15%). B@CDs were characterized using several tools, including transmission electron microscopy (TEM), dynamic light scattering (DLS), FTIR and Energy dispersive X-ray spectroscopy (EDX) which proved their improved surface properties with an average nano-diameter of 3.0 nm. The interaction between B@CDs and APL led to enhancement their fluorescence at 441 nm (excitation at 372 nm). The approach was validated for the determination of APL within concentration range of 15.0-700.0 ng mL- 1 with quantification limit LOQ 4.37 ng mL- 1 and detection limit LOD 1.44 ng mL- 1. The approach was successfully applied for the determination of APL in human plasma and pharmaceutical monitoring of its marketed tablet form. Then, the approach was assessed for its environmental impact using different metrics and proved its ecological greenness.

5.
Int J Biol Macromol ; 276(Pt 1): 133616, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009258

RESUMEN

BACKGROUND: Despite cisplatin's long history as a cornerstone in cancer therapy, both acquired chemoresistance and significant impacts on healthy tissues limit its use. Hepatotoxicity is one of its side effects. Adjunct therapies have shown promise in not only attenuating liver damage caused by cisplatin but also in enhancing the efficacy of chemotherapy. In this context, a new quaternary ammonium chitosan Schiff base (QACSB) was synthesized and applied as an encapsulating agent for the in-situ synthesis of QACSB-ZnO nanocomposite. MATERIAL AND METHODS: Thirty male albino rats were classified into Group 1 (control) distilled water, Group 2 (Cisplatin-treated) (12 mg/kg, i.p), and Group 3 (QACSB-ZnO NCs/cisplatin-treated) (150 mg/kg/day QACSB-ZnO NCs, i.p) for 14 days + a single dose of cisplatin. Liver functions, tissue TNF-α, MDA, and GSH were measured as well as histopathological and immunohistochemical studies were performed. RESULTS: The QACSB-ZnO NCs significantly restore liver functions, tissue TNF-α, MDA, and GSH levels (p < 0.001). Histopathological examination showed patchy necrosis in the cisplatin-treated group versus other groups. The QACSB-ZnO NCs showed a weak TGF-ß1 (score = 4) and a moderate Bcl-2 immunohistochemistry expression (score = 6) versus the CP group. CONCLUSIONS: QACSB-ZnO NCs have been shown to protect the liver from cisplatin-induced hepatotoxicity.


Asunto(s)
Quitosano , Cisplatino , Nanocompuestos , Compuestos de Amonio Cuaternario , Bases de Schiff , Óxido de Zinc , Animales , Cisplatino/efectos adversos , Bases de Schiff/química , Bases de Schiff/farmacología , Quitosano/química , Quitosano/farmacología , Ratas , Nanocompuestos/química , Masculino , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Óxido de Zinc/química , Óxido de Zinc/farmacología , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Glutatión/metabolismo , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Factor de Necrosis Tumoral alfa/metabolismo , Malondialdehído/metabolismo
6.
Drug Dev Ind Pharm ; 50(7): 605-618, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38963406

RESUMEN

BACKGROUND: Obesity has become a prevalent issue worldwide, leading to various complications such as hyperlipidemia, diabetes, and cardiovascular problems. Statins, as FDA approved anti-hyperlipidemic drugs, still pose some concerns upon their administration. Recently, researchers have looked for natural products as an alternative to manage hyperlipidemia and obesity. AIM: This work aimed to study the hypolipidemic effect of Lepidium sativum garden cress (GC) from different preparations; orally administered seeds, and hydrogel, in comparison to atorvastatin. METHODS: GC hydrogel was prepared from the GC aqueous extract and pharmaceutically evaluated for its pH, spreadability, seeds content, homogeneity, rheology, and in vitro release. The rat's body weight, blood glucose levels, total lipid profile, and liver biomarkers were evaluated on obese rats for one month. In addition, the histopathology study was also performed. RESULTS: GC hydrogel had acceptable pharmaceutical properties and showed a sustained release performance over 24 h. Oral and topical GC significantly reduced the lipid profiles, blood sugar and ALT, AST levels more than the negative control group and comparable to atorvastatin. It was found that oral GC showed a significant effect on the percentage decrease in the rat's body weight than the applied hydrogel. Histopathology study revealed a better outcome in the histological structure of pancreas and liver compared with rats feed on high fat diet post-treatment for one month. CONCLUSION: GC orally administered, or topically applied hydrogel could be a promising, safe alternative formulation to atorvastatin in managing hyperlipidemia and normalizing body weight of obese rats.


Asunto(s)
Atorvastatina , Dieta Alta en Grasa , Hidrogeles , Lepidium sativum , Obesidad , Extractos Vegetales , Semillas , Animales , Atorvastatina/administración & dosificación , Atorvastatina/farmacología , Ratas , Semillas/química , Dieta Alta en Grasa/efectos adversos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Lepidium sativum/química , Administración Oral , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Masculino , Hipolipemiantes/farmacología , Hipolipemiantes/administración & dosificación , Hipolipemiantes/química , Ratas Wistar , Hiperlipidemias/tratamiento farmacológico , Lípidos/sangre , Glucemia/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología
7.
Luminescence ; 39(6): e4801, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38855811

RESUMEN

Atopic dermatitis (AD) is a persistent, inflammatory skin condition that impacts approximately 15 to 20% of children and 1 to 3% of adults globally. Common skin manifestations include papules, papulovesicular, and brown or red patches with swelling, crusting, and flaking. Therefore, the drug abrocitinib (ABR) was approved by the US FDA as an oral treatment for atopic dermatitis. The present study outlines the development of innovative, thermostable, and pH-stable organic solvent-free nitrogen-doped carbon dots (N@CQDs) synthesized through a one-step method for evaluating ABR with a notable quantum yield of 33.84% to minimize the use of organic solvents. Their cost-effectiveness, eco-friendly characteristics, and outstanding photocatalytic properties have established them as a promising alternative to conventional luminescent techniques like fluorescent dyes and luminous derivatization technique. The reaction of ABR with N@CQDs led to a significant decrease in the luminescent response of the produced green and stable carbon quantum dots at 513 nm. The detection range was determined to be 1.0-150.0 ng mL-1, with a lower limit of quantitation (LOQ) equal to 0.52 ng mL-1 based on the linear graph. The green method effectively used for analysis of ABR in pharmaceutical tablets and pharmacokinetic study with high sensitivity.


Asunto(s)
Carbono , Nitrógeno , Puntos Cuánticos , Puntos Cuánticos/química , Carbono/química , Nitrógeno/química , Humanos , Pirimidinas/química , Pirimidinas/sangre , Pirimidinas/síntesis química , Fluorometría , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Solventes/química , Estructura Molecular
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124470, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38761476

RESUMEN

Recently, nanomaterials have attracted a lot of attention due to their potential as effective fluorescent nano-sensor probes. They were distinguishing substitutes for other luminescent techniques, such as fluorescent dyes and luminous derivatization, because of their affordability, environmental friendliness, and special photocatalytic properties. In the suggested work, a straightforward method was used to create boron and nitrogen carbon dots (B@CDs) with a good quantum yield value of 31.15 % utilizing boric acid and di-sodium EDTA. For the purpose of characterizing QDs, a variety of instruments were employed, such as transmission electron microscopy, fluorescence spectroscopy, X-ray FTIR, and UV-VIS spectroscopy. Nebivolol (NEB) is a cardiovascular medication used globally to treat congestive heart failure and hypertension, is in the meantime. For this reason, a brand-new, environmentally friendly analytical technique was created to determine the amount of human plasma, uniformity test, and commercial nebivolol (NEB) tablets. After gradually adding NEB, the response of B@CQDs was enhanced at 438 nm (excitation at 371 nm). The calibration graph ranged between 20 and 500 ng mL-1 with a quantification limit (LOQ) of 2.50 ng mL-1 and a detection limit (LOD) of 0.82 ng mL-1.


Asunto(s)
Boro , Carbono , Nebivolol , Puntos Cuánticos , Nebivolol/sangre , Nebivolol/análisis , Humanos , Carbono/química , Puntos Cuánticos/química , Boro/química , Tecnología Química Verde/métodos , Espectrometría de Fluorescencia/métodos , Límite de Detección , Espectroscopía Infrarroja por Transformada de Fourier , Comprimidos , Espectrofotometría Ultravioleta
9.
RSC Adv ; 14(15): 10445-10451, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38567336

RESUMEN

Avapritinib (AVA) is the first medication authorized by the US-FDA in 2020 for the management of gastrointestinal stromal tumours (GISTs) that can't be treated by surgery. Cancer is among the most common causes of death worldwide and is the second most common cause of death after cardiovascular disease. Therefore, a quick, easy, sensitive, and straightforward fluorimetric approach was used to analyse AVA in pharmaceutical materials and blood plasma (pharmacokinetic). The suggested technique relies on 2% sodium dodecyl sulphate (SDS, pH 4) micellar system augmentation of the fluorescence of the tested drug. The technique demonstrated high relative fluorescence intensity (RFI) at 430 nm after excitation at 340 nm. Concentrations ranging from 20.0-400.0 ng mL-1 with a limit of quantitation of 9.47 ng mL-1 were used to obtain luminescence data for the studied medicine. In addition, the quantum yield of the AVA fluorescence was increased with the gradual addition of a surfactant at a concentration above its critical micellar level. This knowledge has been exploited to enhance the effectiveness of a spectrofluorometric technique for the estimation of AVA in human plasma (98.95 ± 1.22%) and uniformity tests with greenness assessments. The conditions for enhanced fluorescence were optimized and fully validated using US-FDA and International Conference on Harmonization (ICH) rules. This innovative strategy was expanded for AVA stability research in human plasma across various circumstances. This approach is an eco-friendly solution compared to traditional testing methods that use hazardous chemicals.

10.
Int J Biol Macromol ; 267(Pt 2): 131635, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641269

RESUMEN

New quaternized salicylidene chitosan Schiff bases (QSCSBs) and their N-octyl derivatives (OQCs) have been synthesized and characterized, aiming to develop innovative antimicrobial and anti-biofilm agents. This research holds immense potential, as these compounds could be utilized as anti-biofouling additives in membrane technology in the future. The synthesis involved the modification of low molecular-weight-chitosan (LMC) through simultaneous Schiff base formation and quaternization processes to create QSCSBs. Subsequently, QSCSBs were catalytically reduced to form quaternized N-benzyl chitosan (QBCs) intermediates, which then underwent nucleophilic substitution reactions affording N-octyl quaternized chitosans (OQCs). Characterization techniques such as elemental, spectral, and microscopic analyses were used to confirm the successful synthesis of these materials. As membrane technology relies on surface charge, QSCSBs and OQCs with large zeta potentials could be used as positively charged additives. Moreover, SEM image revealed the regular distribution of pores and voids across the additives' surfaces raises intriguing questions about their implications for membrane performance. Meanwhile, the superior antibacterial and antibiofilm potential of these materials, particularly QSCSB2 and OQC2, indicate that the utilization of these compounds as anti-biofouling additives in membrane technology could significantly improve the performance and longevity of membranes used in various applications such as water treatment and desalination.


Asunto(s)
Antiinfecciosos , Biopelículas , Quitosano , Membranas Artificiales , Bases de Schiff , Quitosano/química , Quitosano/farmacología , Quitosano/análogos & derivados , Quitosano/síntesis química , Bases de Schiff/química , Bases de Schiff/farmacología , Bases de Schiff/síntesis química , Biopelículas/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
12.
J Am Chem Soc ; 146(9): 6199-6208, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38394360

RESUMEN

A reliable solid electrolyte interphase (SEI) on the metallic Zn anode is imperative for stable Zn-based aqueous batteries. However, the incompatible Zn-ion reduction processes, scilicet simultaneous adsorption (capture) and desolvation (repulsion) of Zn2+(H2O)6, raise kinetics and stability challenges for the design of SEI. Here, we demonstrate a tandem chemistry strategy to decouple and accelerate the concurrent adsorption and desolvation processes of the Zn2+ cluster at the inner Helmholtz layer. An electrochemically assembled perforative mesopore SiO2 interphase with tandem hydrophilic -OH and hydrophobic -F groups serves as a Janus mesopores accelerator to boost a fast and stable Zn2+ reduction reaction. Combining in situ electrochemical digital holography, molecular dynamics simulations, and spectroscopic characterizations reveals that -OH groups capture Zn2+ clusters from the bulk electrolyte and then -F groups repulse coordinated H2O molecules in the solvation shell to achieve the tandem ion reduction process. The resultant symmetric batteries exhibit reversible cycles over 8000 and 2000 h under high current densities of 4 and 10 mA cm-2, respectively. The feasibility of the tandem chemistry is further evidenced in both Zn//VO2 and Zn//I2 batteries, and it might be universal to other aqueous metal-ion batteries.

13.
Appl Spectrosc ; 78(3): 329-339, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38166449

RESUMEN

Terbium- and nitrogen-doped carbon quantum dots (Tb,N@CQDs) were greenly created employing microwave synthesis from plum juice with terbium nitrate. The synthesis of Tb,N@CQDs was fast (7 min) with a high quantum yield (35.44%). Tb,N@CQDs were fully characterized using transmission electron microscopy, Zeta potential analysis, fluorescence, and ultraviolet spectroscopy. Omadacycline (OMC) is a broad-spectrum tetracycline that has been recently approved by the United States Food and Drug Act (FDA) in October 2018. OMC is the first oral aminomethylcycline class antibiotic drug that was authorized for the treatment of acute skin structure infections and community-acquired pneumonia. Tb,N@CQDs exhibited emission at 440 nm after excitation at 360 nm, where their fluorescence intensity showed a reduction upon addition of OMC. The experimental parameters were further studied and optimized. The linear range was between 40 and 60 parts per billion (ppb), with (limit of quantitation) equal to 34.78 ppb. The proposed approach was validated for bioanalytical purposes using FDA guidelines and proved to be straightforward, cheap, highly sensitive, and very selective, which can be used in clinical studies. The developed approach proved to be green using some current assessment metrics and was applied successfully for the determination of OMC in human plasma, milk, and pharmaceutical formulations as well as pharmacokinetic study.


Asunto(s)
Puntos Cuánticos , Humanos , Puntos Cuánticos/química , Terbio/química , Tetraciclinas , Carbono/química , Nitrógeno
14.
Int J Biol Macromol ; 258(Pt 1): 128839, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134998

RESUMEN

In this study, we aim to unveil the potential of itaconyl chondroitin sulfate nanogel (ICSNG) in tackling chronic kidney diseases triggered by the administration of CDDP and doxorubicin (Adriamycin, ADR). To that end, the new drug delivery system (ICSNG) was initially prepared, characterized, and loaded with the target drugs. Thereafter, the in-vivo studies were performed using five equally divided groups of 100 male Sprague-Dawley (SD) rats. Biochemical evaluation and immunohistochemistry studies have revealed the renal toxicity and the ameliorative effects of ICSNG on renal function. When ICSNG-based treatments were contrasted with the CDDP and ADR infected groups, they significantly increased paraoxonase-1 (PON-1), superoxide dismutase (SOD), catalase (CAT) and albumin activity and significantly decreased nitric oxide (NO), tumor necrosis factor alpha (TNF-α), creatinine, urea, and cyclooxygenase-2 (COX-2) activity (p < 0.001). The findings of the current study imply that ICSNG may be able to lessen renal inflammation and damage in chronic kidney disorders brought on by the administration of CDDP and ADR. Interestingly, according to the estimated selectivity indices, the ICSNG-encapsulated drugs have demonstrated superior selectivity for cancer MCF-7 cells, over healthy HSF cells, in comparison to the bare drugs.


Asunto(s)
Cisplatino , Riñón , Polietilenglicoles , Polietileneimina , Ratas , Masculino , Animales , Cisplatino/farmacología , Sulfatos de Condroitina/farmacología , Nanogeles , Ratas Sprague-Dawley , Antioxidantes/farmacología , Doxorrubicina/farmacología , Estrés Oxidativo , Creatinina/metabolismo
15.
Drug Dev Ind Pharm ; 50(2): 112-123, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38156891

RESUMEN

BACKGROUND: Lepidium sativum, Garden Cress (GC), seeds have a lot of natural molecules with a pronounced activity against different disorders. It was reported that GC seeds have the ability to lower the blood glucose level. AIM: The aim of this work was to formulate GC seeds into oral tablets containing a fixed dose of the grounded seeds. Furthermore, the anti-diabetic performance of the prepared tablets was studied in the streptozotocin rats' model in comparison with positive control metformin. METHODS: Micrometrics of GC grounded seeds with different excipients were investigated. Then, GC tablets were prepared via direct compression technique. GC tablets were characterized for their uniformity of dosage unit, friability, hardness, disintegration time, and in vitro release. The antidiabetic effect was studied in rats for a period of 28 days. Glycosylated hemoglobin, liver performance, and lipid levels include total cholesterol (TC), triglycerides (TGs), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) were also estimated. In addition, histopathological study of liver and pancreas was also performed. RESULTS: Prosolv®EasyTab produced tablets with higher hardness, lower disintegration time, and fast release. GC tablets significantly lower the elevated blood glucose level. In addition, they have antihyperlipidemic activity, hepatocellular protective role and restore the histology of the liver and pancreas. CONCLUSION: GC tablets could be a promising alternative formulation to control the high blood glucose level in diabetic rats rather than chemically derivatized drugs.


Asunto(s)
Diabetes Mellitus Experimental , Lepidium , Metformina , Ratas , Animales , Hipoglucemiantes/farmacología , Glucemia , Diabetes Mellitus Experimental/tratamiento farmacológico , Comprimidos/química
16.
Healthcare (Basel) ; 11(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38063619

RESUMEN

COVID-19 vaccine acceptance and refusal vary across countries and among different socio-demographic groups. This study investigates hesitancy related to the COVID-19 vaccine and the associated factors in the rural-community-dominated Jazan Province, Saudi Arabia. A cross-sectional study through an online questionnaire was conducted from February to April 2021 to investigate the extent of vaccine hesitancy related to the COVID-19 vaccine and the associated factors in the Jazan region. A Chi-squared test and post hoc analysis were conducted to analyze the statistical significance of the association between variables. Of the 569 participants who completed the online questionnaire, the majority were males (81.5%) and had a university education (72.6%). Of the participants, more than one-third (36.9%) were hesitant to vaccinate. Concern about adverse side effects following vaccination was the most reported reason for vaccine hesitancy (42.6%), followed by beliefs that the vaccine was unsafe or ineffective (15.5%). The data analysis revealed that people who lived in cities in Jazan Province or those who did not have a family history of COVID-19 infection were more likely to be vaccine hesitant. It is more important than ever to develop and implement community-based strategies to address vaccine hesitancy, especially in rural areas.

17.
Best Pract Res Clin Anaesthesiol ; 37(3): 269-284, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37929822

RESUMEN

Total joint arthroplasty is one of the most commonly performed surgical procedures in the United States, and projected numbers are expected to double in the next ten years. From 2018 to 2020, total hip and knee arthroplasty were removed from the United States' Center for Medicare and Medicaid Services "inpatient-only" list, accelerating this migration to the ambulatory setting. Appropriate patient selection, including age, body mass index, comorbidities, and adequate social support, is critical for successful ambulatory total joint arthroplasty. General anesthesia and neuraxial anesthesia are both safe and effective anesthetic choices, and recent studies in this population have found no difference in outcomes. Multimodal analgesia, including acetaminophen, nonsteroidal anti-inflammatory drugs, local infiltration analgesia, and peripheral nerve blocks, is the foundation for adequate pain control. Common reasons for "failure to launch" include postoperative urinary retention, postoperative nausea and vomiting, inadequate analgesia, and hypotension.


Asunto(s)
Anestesia de Conducción , Artroplastia de Reemplazo de Cadera , Artroplastia de Reemplazo de Rodilla , Humanos , Anciano , Estados Unidos , Procedimientos Quirúrgicos Ambulatorios , Dolor Postoperatorio/diagnóstico , Dolor Postoperatorio/prevención & control , Medicare , Artroplastia de Reemplazo de Rodilla/efectos adversos , Artroplastia de Reemplazo de Rodilla/métodos , Náusea y Vómito Posoperatorios
18.
J Am Chem Soc ; 145(44): 24284-24293, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37888942

RESUMEN

Zinc metal-based aqueous batteries (ZABs) offer a sustainable, affordable, and safe energy storage alternative to lithium, yet inevitable dendrite formation impedes their wide use, especially under long-term and high-rate cycles. How the battery can survive after dendrite formation remains an open question. Here, we pivot from conventional Zn dendrite growth suppression strategies, introducing proactive dendrite-digesting chemistry via a mesoporous Ti3C2 MXene (MesoTi3C2)-wrapped polypropylene separator. Spectroscopic characterizations and electrochemical evaluation demonstrate that MesoTi3C2, acting as an oxidant, can revive the formed dead Zn0 dendrites into electroactive Zn2+ ions through a spontaneous redox process. Density functional theory reveals that the abundant edge-Ti-O sites in our MesoTi3C2 facilitate high oxidizability and electron transfer from Zn0 dendrites compared to their in-plane counterparts. The resultant asymmetrical cell demonstrates remarkable ultralong cycle life of 2200 h at a practical current of 5 mA cm-2 with a low overpotential (<50 mV). The study reveals the unexpected edge effect of mesoporous MXenes and uncovers a new proactive dendrite-digesting chemistry to survive ZABs, albeit with inevitable dendrite formation.

19.
Sci Adv ; 9(36): eadh2140, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37683007

RESUMEN

Blue perovskite light-emitting diodes (LEDs) have shown external quantum efficiencies (EQEs) of more than 10%; however, devices that emit in the true blue-those that accord with the emission wavelength required for Rec. 2100 primary blue-have so far been limited to EQEs of ~6%. We focused here on true blue emitting CsPbBr3 colloidal nanocrystals (c-NCs), finding in early studies that they suffer from a high charge injection barrier, a problem exacerbated in films containing multiple layers of nanocrystals. We introduce a self-assembled monolayer (SAM) active layer that improves charge injection. We identified a bifunctional capping ligand that simultaneously enables the self-assembly of CsPbBr3 c-NCs while passivating surface traps. We report, as a result, SAM-based LEDs exhibit a champion EQE of ~12% [CIE of (0.132, 0.069) at 4.0 V with a luminance of 11 cd/m2], and 10-fold-enhanced operating stability relative to the best previously reported Rec. 2100-blue perovskite LEDs.

20.
J Phys Chem Lett ; 14(40): 8962-8969, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37772502

RESUMEN

Mixed iodide-bromide methylammonium lead perovskite (MAPbIxBr3-x) nanocrystals (NCs) hold promise for use in light-emitting applications owing to the size- and composition-tunability of their bandgap. However, the segregation of halides during light exposure causes their band gaps to become unstable and narrow. Here, we use transient absorption spectroscopy to track excited-state dynamics during photoinduced halide segregation. The Auger recombination dynamics are observed to accelerate as the bandgap narrows, suggesting enhanced electron-hole overlap. We simulate the motion of iodide within the NC and estimate the evolving bandgap and electron-hole overlap during two possible mechanisms of halide segregation. Our results support a segregation mechanism in which iodide anions form a domain within the NC, rather than a mechanism in which iodide anions independently segregate toward the NC surface. Such mechanistic insight will contribute to future NC bandgap stabilization strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...