Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36985688

RESUMEN

Gas-phase infiltration of the carbonylchloridogold(I), Au(CO)Cl precursor into the pores of HKUST-1 ([Cu3(BTC)2(H2O)2], Cu-BTC) SURMOFs (surface-mounted metal-organic frameworks; BTC = benzene-1,3,5-tricarboxylate) leads to Au(CO)Cl decomposition within the MOF through hydrolysis with the aqua ligands on Cu. Small Aux clusters with an average atom number of x ≈ 5 are formed in the medium-sized pores of the HKUST-1 matrix. These gold nanoclusters are homogeneously distributed and crystallographically ordered, which was supported by simulations of the powder X-ray diffractometric characterization. Aux@HKUST-1 was further characterized by scanning electron microscopy (SEM) and infrared reflection absorption (IRRA) as well as Raman spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP-OES).

2.
J Phys Condens Matter ; 34(40)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-33596560

RESUMEN

This investigation on metal-organic framework (MOF) HUKUST-1 films focuses on comparing the undoped pristine state and with the case of doping by TCNQ infiltration of the MOF pore structure. We have determined the temperature dependent charge transport andp-type conductivity for HKUST-1 films. Furthermore, the electrical conductivity and the current-voltage characteristics have been characterized in detail. Because the most common forms of MOFs, bulk MOF powders, do not lend themselves easily to electrical characterization investigations, here in this study the electrical measurements were performed on dense, compact surface-anchored metal-organic framework (SURMOF) films. These monolithic, well-defined, and (001) preferentially oriented MOF thin films are grown using quasi-liquid phase epitaxy (LPE) on specially functionalized silicon or borosilicate glass substrates. In addition to the pristine SURMOF films also the effect of loading these porous thin films with TCNQ has been investigated. Positive charge carrier conduction and a strong anisotropy in electrical conduction was observed for highly oriented SURMOF films and corroborated with Seebeck coefficient measurements. Van der Pauw four-point Hall sample measurements provide important insight into the electrical behavior of such porous and hybrid organic-inorganic crystalline materials, which renders them attractive for potential use in microelectronic and optoelectronic devices and thermoelectric applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...