Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36189922

RESUMEN

The mTORC1 substrate, S6 Kinase 1 (S6K1), is involved in the regulation of cell growth, ribosome biogenesis, glucose homeostasis, and adipogenesis. Accumulating evidence has suggested a role for mTORC1 signaling in the DNA damage response. This is mostly based on the findings that mTORC1 inhibitors sensitized cells to DNA damage. However, a direct role of the mTORC1-S6K1 signaling pathway in DNA repair and the mechanism by which this signaling pathway regulates DNA repair is unknown. In this study, we discovered a novel role for S6K1 in regulating DNA repair through the coordinated regulation of the cell cycle, homologous recombination (HR) DNA repair (HRR) and mismatch DNA repair (MMR) mechanisms. Here, we show that S6K1 orchestrates DNA repair by phosphorylation of Cdk1 at serine 39, causing G2/M cell cycle arrest enabling homologous recombination and by phosphorylation of MSH6 at serine 309, enhancing MMR. Moreover, breast cancer cells harboring RPS6KB1 gene amplification show increased resistance to several DNA damaging agents and S6K1 expression is associated with poor survival of breast cancer patients treated with chemotherapy. Our findings reveal an unexpected function of S6K1 in the DNA repair pathway, serving as a tumorigenic barrier by safeguarding genomic stability.


Damage to the DNA in our cells can cause harmful changes that, if unchecked, can lead to the development of cancer. To help prevent this, cellular mechanisms are in place to repair defects in the DNA. A particular process, known as the mTORC1-S6K1 pathway is suspected to be important for repair because when this pathway is blocked, cells become more sensitive to DNA damage. It is still unknown how the various proteins involved in the mTORC1-S6K1 pathway contribute to repairing DNA. One of these proteins, S6K1, is an enzyme involved in coordinating cell growth and survival. The tumor cells in some forms of breast cancer produce more of this protein than normal, suggesting that S6K1 benefits these cells' survival. However, it is unclear exactly how the enzyme does this. Amar-Schwartz, Ben-Hur, Jbara et al. studied the role of S6K1 using genetically manipulated mouse cells and human cancer cells. These experiments showed that the protein interacts with two other proteins involved in DNA repair and activates them, regulating two different repair mechanisms and protecting cells against damage. These results might explain why some breast cancer tumors are resistant to radiotherapy and chemotherapy treatments, which aim to kill tumor cells by damaging their DNA. If this is the case, these findings could help clinicians choose more effective treatment options for people with cancers that produce additional S6K1. In the future, drugs that block the activity of the enzyme could make cancer cells more susceptible to chemotherapy.


Asunto(s)
Neoplasias de la Mama , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Neoplasias de la Mama/genética , Proteína Quinasa CDC2/metabolismo , ADN , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular , Glucosa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Serina/genética
2.
Nat Commun ; 12(1): 5708, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588452

RESUMEN

Ufmylation is a post-translational modification essential for regulating key cellular processes. A three-enzyme cascade involving E1, E2 and E3 is required for UFM1 attachment to target proteins. How UBA5 (E1) and UFC1 (E2) cooperatively activate and transfer UFM1 is still unclear. Here, we present the crystal structure of UFC1 bound to the C-terminus of UBA5, revealing how UBA5 interacts with UFC1 via a short linear sequence, not observed in other E1-E2 complexes. We find that UBA5 has a region outside the adenylation domain that is dispensable for UFC1 binding but critical for UFM1 transfer. This region moves next to UFC1's active site Cys and compensates for a missing loop in UFC1, which exists in other E2s and is needed for the transfer. Overall, our findings advance the understanding of UFM1's conjugation machinery and may serve as a basis for the development of ufmylation inhibitors.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Dominio Catalítico/genética , Humanos , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/genética , Proteínas/genética , Proteínas/aislamiento & purificación , Proteínas/ultraestructura , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/aislamiento & purificación , Enzimas Activadoras de Ubiquitina/ultraestructura , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/aislamiento & purificación , Enzimas Ubiquitina-Conjugadoras/ultraestructura , Difracción de Rayos X
3.
Nat Commun ; 12(1): 2249, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883550

RESUMEN

The RNA chaperone Hfq, acting as a hexamer, is a known mediator of post-transcriptional regulation, expediting basepairing between small RNAs (sRNAs) and their target mRNAs. However, the intricate details associated with Hfq-RNA biogenesis are still unclear. Previously, we reported that the stringent response regulator, RelA, is a functional partner of Hfq that facilitates Hfq-mediated sRNA-mRNA regulation in vivo and induces Hfq hexamerization in vitro. Here we show that RelA-mediated Hfq hexamerization requires an initial binding of RNA, preferably sRNA to Hfq monomers. By interacting with a Shine-Dalgarno-like sequence (GGAG) in the sRNA, RelA stabilizes the initially unstable complex of RNA bound-Hfq monomer, enabling the attachment of more Hfq subunits to form a functional hexamer. Overall, our study showing that RNA binding to Hfq monomers is at the heart of RelA-mediated Hfq hexamerization, challenges the previous concept that only Hfq hexamers can bind RNA.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , GTP Pirofosfoquinasa/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , ARN Bacteriano/metabolismo , Sustitución de Aminoácidos , Secuencia de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , GTP Pirofosfoquinasa/química , GTP Pirofosfoquinasa/genética , Proteína de Factor 1 del Huésped/química , Modelos Biológicos , Unión Proteica , Multimerización de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Subunidades de Proteína , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Eliminación de Secuencia
4.
J Mol Biol ; 431(3): 463-478, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30412706

RESUMEN

Modification of proteins by the ubiquitin-like protein, UFM1, requires activation of UFM1 by the E1-activating enzyme, UBA5. In humans, UBA5 possesses two isoforms, each comprising an adenylation domain, but only one containing an N-terminal extension. Currently, the role of the N-terminal extension in UFM1 activation is not clear. Here we provide structural and biochemical data on UBA5 N-terminal extension to understand its contribution to UFM1 activation. The crystal structures of the UBA5 long isoform bound to ATP with and without UFM1 show that the N-terminus not only is directly involved in ATP binding but also affects how the adenylation domain interacts with ATP. Surprisingly, in the presence of the N-terminus, UBA5 no longer retains the 1:2 ratio of ATP to UBA5, but rather this becomes a 1:1 ratio. Accordingly, the N-terminus significantly increases the affinity of ATP to UBA5. Finally, the N-terminus, although not directly involved in the E2 binding, stimulates transfer of UFM1 from UBA5 to the E2, UFC1.


Asunto(s)
Activación Enzimática/fisiología , Isoformas de Proteínas/metabolismo , Proteínas/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina/metabolismo , Humanos , Unión Proteica/fisiología , Dominios Proteicos/fisiología
5.
FASEB J ; 32(5): 2794-2802, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29295865

RESUMEN

All ubiquitin-like proteins (UBLs) undergo an activation process before their conjugation to target proteins. Although the steps required for the activation of UBLs are conserved and common to all UBLs, we have previously shown that the activation of the UBL, ubiquitin fold modifier 1 (UFM1) by the E1, Ufm1 modifier-activating enzyme 5 (UBA5) is executed in a trans-binding mechanism, not observed in any other E1. In this study, we explored the necessity of that mechanism for UFM1 activation and found that it is needed not only for UFM1 binding to UBA5 but also for stabilizing the UBA5 homodimer. Although UBA5 functions as a dimer, in solution it behaves as a weak dimer. Dimerization of UBA5 is required for ATP binding; therefore, stabilization of the dimer by UFM1 enhances ATP binding. Our results make a connection between the binding of UFM1 to UBA5 and the latter's affinity to ATP, so we propose a novel mechanism for the regulation of ATP's binding to E1.-Mashahreh, B., Hassouna, F., Soudah, N., Cohen-Kfir, E., Strulovich, R., Haitin, Y., Wiener, R. Trans-binding of UFM1 to UBA5 stimulates UBA5 homodimerization and ATP binding.


Asunto(s)
Adenosina Trifosfato/química , Multimerización de Proteína , Proteínas/química , Enzimas Activadoras de Ubiquitina/química , Adenosina Trifosfato/metabolismo , Humanos , Unión Proteica , Estructura Cuaternaria de Proteína , Proteínas/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo
6.
Cell Rep ; 16(12): 3113-3120, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27653677

RESUMEN

Modification of proteins by ubiquitin or ubiquitin-like proteins (UBLs) is a critical cellular process implicated in a variety of cellular states and outcomes. A prerequisite for target protein modification by a UBL is the activation of the latter by activating enzymes (E1s). Here, we present the crystal structure of the non-canonical homodimeric E1, UBA5, in complex with its cognate UBL, UFM1, and supporting biochemical experiments. We find that UBA5 binds to UFM1 via a trans-binding mechanism in which UFM1 interacts with distinct sites in both subunits of the UBA5 dimer. This binding mechanism requires a region C-terminal to the adenylation domain that brings UFM1 to the active site of the adjacent UBA5 subunit. We also find that transfer of UFM1 from UBA5 to the E2, UFC1, occurs via a trans mechanism, thereby requiring a homodimer of UBA5. These findings explicitly elucidate the role of UBA5 dimerization in UFM1 activation.


Asunto(s)
Procesamiento Proteico-Postraduccional/fisiología , Proteínas/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitinación/fisiología , Ubiquitinas/metabolismo , Humanos , Proteínas Ubiquitinadas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...