Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062529

RESUMEN

Early detection of cancer via biomarkers is vital for improving patient survival rates. In the case of skin cancers, low-molecular-weight biomarkers can penetrate the skin barrier, enabling non-invasive sampling at an early stage. This study focuses on detecting tryptophan (Trp) and kynurenine (Kyn) on the surface of reconstructed 3D melanoma and melanocyte models. This is examined in connection with IDO-1 and IL-6 expression in response to IFN-γ or UVB stimulation, both crucial factors of the melanoma tumor microenvironment (TME). Using a polystyrene scaffold, full-thickness human skin equivalents containing fibroblasts, keratinocytes, and melanocytes or melanoma cells were developed. The samples were stimulated with IFN-γ or UVB, and Trp and Kyn secretion was measured using HPLC-PDA and HPLC-MS. The expression of IDO-1 and IL-6 was measured using RT-qPCR. Increased Trp catabolism to Kyn was observed in IFN-γ-stimulated melanoma and melanocyte models, along with higher IDO-1 expression. UVB exposure led to significant changes in Kyn levels but only in the melanoma model. This study demonstrates the potential of skin surface Trp and Kyn monitoring to capture TME metabolic changes. It also lays the groundwork for future in vivo studies, aiding in understanding and monitoring skin cancer progression.


Asunto(s)
Biomarcadores de Tumor , Indolamina-Pirrol 2,3,-Dioxigenasa , Interleucina-6 , Quinurenina , Melanocitos , Melanoma , Neoplasias Cutáneas , Triptófano , Quinurenina/metabolismo , Humanos , Triptófano/metabolismo , Melanoma/metabolismo , Melanoma/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Melanocitos/metabolismo , Melanocitos/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interleucina-6/metabolismo , Interferón gamma/metabolismo , Interferón gamma/farmacología , Línea Celular Tumoral , Microambiente Tumoral , Rayos Ultravioleta
2.
Polymers (Basel) ; 15(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37959879

RESUMEN

Molecularly imprinted polymers (MIPs) and the imprinting technique provide polymeric material with recognition elements similar to natural antibodies. The template of choice (i.e., the antigen) can be almost any type of smaller or larger molecule, protein, or even tissue. There are various formats of MIPs developed for different medical purposes, such as targeting, imaging, assay diagnostics, and biomarker detection. Biologically applied MIPs are widely used and currently developed for medical applications, and targeting the antigen with MIPs can also help in personalized medicine. The synthetic recognition sites of the MIPs can be tailor-made to function as analytics, diagnostics, and drug delivery systems. This review will cover the promising clinical applications of different MIP systems recently developed for disease diagnosis and treatment.

3.
Mol Cancer Res ; 21(12): 1329-1341, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37698543

RESUMEN

The clinical success of combined androgen deprivation therapy (ADT) and radiotherapy (RT) in prostate cancer created interest in understanding the mechanistic links between androgen receptor (AR) signaling and the DNA damage response (DDR). Convergent data have led to a model where AR both regulates, and is regulated by, the DDR. Integral to this model is that the AR regulates the transcription of DDR genes both at a steady state and in response to ionizing radiation (IR). In this study, we sought to determine which immediate transcriptional changes are induced by IR in an AR-dependent manner. Using PRO-seq to quantify changes in nascent RNA transcription in response to IR, the AR antagonist enzalutamide, or the combination of the two, we find that enzalutamide treatment significantly decreased expression of canonical AR target genes but had no effect on DDR gene sets in prostate cancer cells. Surprisingly, we also found that the AR is not a primary regulator of DDR genes either in response to IR or at a steady state in asynchronously growing prostate cancer cells. IMPLICATIONS: Our data indicate that the clinical benefit of combining ADT with RT is not due to direct AR regulation of DDR gene transcription, and that the field needs to consider alternative mechanisms for this clinical benefit.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Antagonistas de Andrógenos/farmacología , Línea Celular Tumoral , Daño del ADN , Neoplasias de la Próstata Resistentes a la Castración/genética
4.
Cells ; 10(6)2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200371

RESUMEN

Manumycin A (MA) is a well-tolerated natural antibiotic showing pleiotropic anticancer effects in various preclinical in vitro and in vivo models. Anticancer drugs may themselves act as stressors to induce the cellular adaptive mechanism that can minimize their cytotoxicity. Heat shock proteins (HSPs) as cytoprotective factors can counteract the deleterious effects of various stressful stimuli. In this study, we examined whether the anticancer effects of MA can be counteracted by the mechanism related to HSPs belonging to the HSPA (HSP70) family. We found that MA caused cell type-specific alterations in the levels of HSPAs. These changes included concomitant upregulation of the stress-inducible (HSPA1 and HSPA6) and downregulation of the non-stress-inducible (HSPA2) paralogs. However, neither HSPA1 nor HSPA2 were necessary to provide protection against MA in lung cancer cells. Conversely, the simultaneous repression of several HSPA paralogs using pan-HSPA inhibitors (VER-155008 or JG-98) sensitized cancer cells to MA. We also observed that genetic ablation of the heat shock factor 1 (HSF1) transcription factor, a main transactivator of HSPAs expression, sensitized MCF7 cells to MA treatment. Our study reveals that inhibition of HSF1-mediated heat shock response (HSR) can improve the anticancer effect of MA. These observations suggest that targeting the HSR- or HSPA-mediated adaptive mechanisms may be a promising strategy for further preclinical developments.


Asunto(s)
Antineoplásicos/farmacología , Proteínas HSP70 de Choque Térmico , Factores de Transcripción del Choque Térmico , Respuesta al Choque Térmico/efectos de los fármacos , Proteínas de Neoplasias , Neoplasias , Polienos/farmacología , Alcamidas Poliinsaturadas/farmacología , Células A549 , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas HSP70 de Choque Térmico/genética , Factores de Transcripción del Choque Térmico/biosíntesis , Factores de Transcripción del Choque Térmico/genética , Respuesta al Choque Térmico/genética , Humanos , Células MCF-7 , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
5.
FEBS J ; 288(21): 6112-6126, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33682350

RESUMEN

Prostate cancer (PCa) is a very complex disease that is a major cause of death in men worldwide. Currently, PCa dependence on the androgen receptor (AR) has resulted in use of AR antagonists and antiandrogen therapies that reduce endogenous steroid hormone production. However, within two to three years of receiving first-line androgen deprivation therapy, the majority of patients diagnosed with PCa progress to castration-resistant prostate cancer (CRPC). There is an urgent need for therapies that are more durable than antagonism of the AR axis. Studies of runt-related transcription factors (RUNX) and their heterodimerization partner, core-binding factor subunit b (CBFß), are revealing that the RUNX family are drivers of CRPC. In this review, we describe what is presently understood about RUNX members in PCa, including what regulates and is regulated by RUNX proteins, and the role of RUNX proteins in the tumor microenvironment and AR signaling. We discuss the implications for therapeutically targeting RUNX, the potential for RUNX as PCa biomarkers, and the current pressing questions in the field.


Asunto(s)
Subunidades alfa del Factor de Unión al Sitio Principal/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata/metabolismo , Factores de Transcripción/metabolismo , Antagonistas de Andrógenos/uso terapéutico , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...