Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1401294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720899

RESUMEN

Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in trans on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in cis, but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in cis and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells. We identified a lipid-binding motif in the juxtamembrane region of Ly49Q and found that Ly49Q organized functional membrane domains comprising sphingolipids via sulfatide binding. Ly49Q recruited actin-remodeling molecules to an immunoreceptor tyrosine-based inhibitory motif, which enabled the sphingolipid-enriched membrane domain to mediate complicated actin remodeling at the lamellipodia and phagosome membranes during phagocytosis. Thus, Ly49Q facilitates integrative regulation of proteins and lipid species to construct a cell type-specific membrane platform. Other Ly49 members possess lipid binding motifs; therefore, membrane platform organization may be a primary role of some NK cell receptors.


Asunto(s)
Esfingolípidos , Animales , Humanos , Esfingolípidos/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Fagocitosis , Fagocitos/inmunología , Fagocitos/metabolismo , Subfamilia A de Receptores Similares a Lectina de Células NK/metabolismo , Membrana Celular/metabolismo , Unión Proteica
2.
Nat Commun ; 15(1): 2216, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519454

RESUMEN

The triplet microtubule, a core structure of centrioles crucial for the organization of centrosomes, cilia, and flagella, consists of unclosed incomplete microtubules. The mechanisms of its assembly represent a fundamental open question in biology. Here, we discover that the ciliopathy protein HYLS1 and the ß-tubulin isotype TUBB promote centriole triplet microtubule assembly. HYLS1 or a C-terminal tail truncated version of TUBB generates tubulin-based superstructures composed of centriole-like incomplete microtubule chains when overexpressed in human cells. AlphaFold-based structural models and mutagenesis analyses further suggest that the ciliopathy-related residue D211 of HYLS1 physically traps the wobbling C-terminal tail of TUBB, thereby suppressing its inhibitory role in the initiation of the incomplete microtubule assembly. Overall, our findings provide molecular insights into the biogenesis of atypical microtubule architectures conserved for over a billion years.


Asunto(s)
Centriolos , Ciliopatías , Humanos , Centriolos/metabolismo , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Centrosoma/metabolismo , Ciliopatías/metabolismo , Cilios/metabolismo , Proteínas/metabolismo
3.
Commun Biol ; 6(1): 1107, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914777

RESUMEN

Phototoxicity is an important issue in fluorescence live imaging of light-sensitive cellular processes such as mitosis. Among several approaches to reduce phototoxicity, the addition of antioxidants to the media has been used as a simple method. Here, we analyzed the impact of phototoxicity on the mitotic progression in fluorescence live imaging of human cells and performed a screen to identify the most efficient antioxidative agents that reduce it. Quantitative analysis shows that high amounts of light illumination cause various mitotic defects such as prolonged mitosis and delays of chromosome alignment and centrosome separation. Among several antioxidants, our screen reveals that ascorbic acid significantly alleviates these phototoxic effects in mitosis. Furthermore, we demonstrate that adding ascorbic acid to the media enables fluorescence imaging of mitotic events at very high temporal resolution without obvious photodamage. Thus, this study provides an optimal method to effectively reduce the phototoxic effects in fluorescence live cell imaging.


Asunto(s)
Antioxidantes , Ácido Ascórbico , Humanos , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Mitosis , Ciclo Celular , Cromosomas
4.
J Biochem ; 174(5): 421-431, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37491733

RESUMEN

Calpain is an intracellular cysteine protease that cleaves its specific substrates in a limited region to modulate cellular function. Calpain-1 (C1) and calpain-2 (C2) are ubiquitously expressed in mammalian cells, but calpain-3 (C3) is a skeletal muscle-specific type. In the course of calpain activation, the N-terminal regions of all three isoforms are clipped off in an intramolecular or intermolecular fashion. C1 proteolyzes C2 to promote further proteolysis, but C2 proteolyzes C1 to suspend C1 proteolysis, indicating the presence of C1-C2 reciprocal proteolysis. However, whether C3 is involved in the calpain proteolysis network is unclear. To address this, we examined whether GFP-tagged C3:C129S (GFP-C3:CS), an inactive protease form of C3, was a substrate for C1 or C2 in HEK cells. Intriguingly, the N-terminal region of C3:CS was cleaved by C1 and C2 at the site identical to that of the C3 autoproteolysis site. Furthermore, the N-terminal clipping of C3:CS by C1 and C2 was observed in mouse skeletal muscle lysates. Meanwhile, C3 preferentially cleaved the N-terminus of C1 over that of C2, and the sizes of these cleaved proteins were identical to their autoproteolysis forms. Our findings suggest an elaborate inter-calpain network to prime and suppress proteolysis of other calpains.


Asunto(s)
Calpaína , Músculo Esquelético , Ratones , Animales , Calpaína/química , Calpaína/metabolismo , Proteolisis , Músculo Esquelético/metabolismo , Mamíferos
5.
BMC Genomics ; 24(1): 289, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248464

RESUMEN

BACKGROUND: Recent advances in CRISPR technology have enabled us to perform gene knock-in in various species and cell lines. CRISPR-mediated knock-in requires donor DNA which serves as a template for homology-directed repair (HDR). For knock-in of short sequences or base substitutions, ssDNA donors are frequently used among various other forms of HDR donors, such as linear dsDNA. However, partly due to the complexity of long ssDNA preparation, it remains unclear whether ssDNA is the optimal type of HDR donors for insertion of long transgenes such as fluorescent reporters in human cells. RESULTS: In this study, we established a nuclease-based simple method for the preparation of long ssDNA with high yield and purity, and comprehensively compared the performance of ssDNA and dsDNA donors with 90 bases of homology arms for endogenous gene tagging with long transgenes in human diploid RPE1 and HCT116 cells. Quantification using flow cytometry revealed lower efficiency of endogenous fluorescent tagging with ssDNA donors than with dsDNA. By analyzing knock-in outcomes using long-read amplicon sequencing and a classification framework, a variety of mis-integration events were detected regardless of the donor type. Importantly, the ratio of precise insertion was lower with ssDNA donors than with dsDNA. Moreover, in off-target integration analyses using donors without homology arms, ssDNA and dsDNA were comparably prone to non-homologous integration. CONCLUSIONS: These results indicate that ssDNA is not superior to dsDNA as long HDR donors with relatively short homology arms for gene knock-in in human RPE1 and HCT116 cells.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Células HCT116 , Diploidia , ADN/metabolismo , ADN de Cadena Simple/genética , Técnicas de Sustitución del Gen , Edición Génica/métodos
6.
J Cell Sci ; 136(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36762651

RESUMEN

The advance of CRISPR/Cas9 technology has enabled us easily to generate gene knockout cell lines by introducing insertion-deletion mutations (indels) at the target site via the error-prone non-homologous end joining repair system. Frameshift-promoting indels can disrupt gene functions by generation of a premature stop codon. However, there is growing evidence that targeted genes are not always knocked out by the indel-based gene disruption. Here, we established a pipeline of CRISPR-del, which induces a large chromosomal deletion by cutting two different target sites, to perform 'complete' gene knockout efficiently in human diploid cells. Quantitative analyses show that the frequency of gene deletion with this approach is much higher than that of conventional CRISPR-del methods. The lengths of the deleted genomic regions demonstrated in this study are longer than those of 95% of the human protein-coding genes. Furthermore, the pipeline enabled the generation of a model cell line having a bi-allelic cancer-associated chromosomal deletion. Overall, these data lead us to propose that the CRISPR-del pipeline is an efficient and practical approach for producing 'complete' gene knockout cell lines in human diploid cells.


Asunto(s)
Sistemas CRISPR-Cas , Diploidia , Humanos , Técnicas de Inactivación de Genes , Sistemas CRISPR-Cas/genética , Mutación INDEL/genética , Línea Celular , Edición Génica/métodos
7.
EMBO J ; 40(18): e107735, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34368969

RESUMEN

Microtubule depolymerases of the kinesin-13 family play important roles in various cellular processes and are frequently overexpressed in different cancer types. Despite the importance of their correct abundance, remarkably little is known about how their levels are regulated in cells. Using comprehensive screening on protein microarrays, we identified 161 candidate substrates of the multi-subunit ubiquitin E3 ligase SCFFbxw5 , including the kinesin-13 member Kif2c/MCAK. In vitro reconstitution assays demonstrate that MCAK and its closely related orthologs Kif2a and Kif2b become efficiently polyubiquitylated by neddylated SCFFbxw5 and Cdc34, without requiring preceding modifications. In cells, SCFFbxw5  targets MCAK for proteasomal degradation predominantly during G2 . While this seems largely dispensable for mitotic progression, loss of Fbxw5 leads to increased MCAK levels at basal bodies and impairs ciliogenesis in the following G1 /G0 , which can be rescued by concomitant knockdown of MCAK, Kif2a or Kif2b. We thus propose a novel regulatory event of ciliogenesis that begins already within the G2 phase of the preceding cell cycle.


Asunto(s)
Cilios/metabolismo , Proteínas F-Box/metabolismo , Cinesinas/metabolismo , Organogénesis , Ciclo Celular/genética , Humanos , Organogénesis/genética , Análisis por Matrices de Proteínas , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
8.
J Cell Biol ; 220(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33492359

RESUMEN

Centrioles duplicate in interphase only once per cell cycle. Newly formed centrioles remain associated with their mother centrioles. The two centrioles disengage at the end of mitosis, which licenses centriole duplication in the next cell cycle. Therefore, timely centriole disengagement is critical for the proper centriole duplication cycle. However, the mechanisms underlying centriole engagement during interphase are poorly understood. Here, we show that Cep57 and Cep57L1 cooperatively maintain centriole engagement during interphase. Codepletion of Cep57 and Cep57L1 induces precocious centriole disengagement in interphase without compromising cell cycle progression. The disengaged daughter centrioles convert into centrosomes during interphase in a Plk1-dependent manner. Furthermore, the centrioles reduplicate and the centriole number increases, which results in chromosome segregation errors. Overall, these findings demonstrate that the maintenance of centriole engagement by Cep57 and Cep57L1 during interphase is crucial for the tight control of centriole copy number and thus for proper chromosome segregation.


Asunto(s)
Centriolos/metabolismo , Interfase , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Segregación Cromosómica , Células HEK293 , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/química , Modelos Biológicos , Proteínas Nucleares/química , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Proteínas Proto-Oncogénicas/metabolismo , Homología de Secuencia de Aminoácido , Huso Acromático/metabolismo , Quinasa Tipo Polo 1
9.
Biosci Rep ; 40(11)2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33078830

RESUMEN

Calpain-1 and calpain-2 are highly structurally similar isoforms of calpain. The calpains, a family of intracellular cysteine proteases, cleave their substrates at specific sites, thus modifying their properties such as function or activity. These isoforms have long been considered to function in a redundant or complementary manner, as they are both ubiquitously expressed and activated in a Ca2+- dependent manner. However, studies using isoform-specific knockout and knockdown strategies revealed that each calpain species carries out specific functions in vivo. To understand the mechanisms that differentiate calpain-1 and calpain-2, we focused on the efficiency and longevity of each calpain species after activation. Using an in vitro proteolysis assay of troponin T in combination with mass spectrometry, we revealed distinctive aspects of each isoform. Proteolysis mediated by calpain-1 was more sustained, lasting as long as several hours, whereas proteolysis mediated by calpain-2 was quickly blunted. Calpain-1 and calpain-2 also differed from each other in their patterns of autolysis. Calpain-2-specific autolysis sites in its PC1 domain are not cleaved by calpain-1, but calpain-2 cuts calpain-1 at the corresponding position. Moreover, at least in vitro, calpain-1 and calpain-2 do not perform substrate proteolysis in a synergistic manner. On the contrary, calpain-1 activity is suppressed in the presence of calpain-2, possibly because it is cleaved by the latter protein. These results suggest that calpain-2 functions as a down-regulation of calpain-1, a mechanism that may be applicable to other calpain species as well.


Asunto(s)
Calpaína/metabolismo , Troponina T/metabolismo , Autólisis , Calpaína/genética , Activación Enzimática , Estabilidad de Enzimas , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Proteolisis , Especificidad por Sustrato , Factores de Tiempo
10.
Biol Open ; 9(9)2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32801165

RESUMEN

Calpain-3 (CAPN3) is a muscle-specific type of calpain whose protease activity is triggered by Ca2+ Here, we developed CAPN3 sensor probes (SPs) to detect activated-CAPN3 using a fluorescence/Förster resonance energy transfer (FRET) technique. In our SPs, partial amino acid sequence of calpastatin, endogenous CAPN inhibitor but CAPN3 substrate, is inserted between two different fluorescence proteins that cause FRET. Biochemical and spectral studies revealed that CAPN3 cleaved SPs and changed emission wavelengths of SPs. Importantly, SPs were scarcely cleaved by CAPN1 and CAPN2. Furthermore, our SP successfully captured the activation of endogenous CAPN3 in living myotubes treated with ouabain. Our SPs would become a promising tool to detect the dynamics of CAPN3 protease activity in living cells.


Asunto(s)
Técnicas Biosensibles/métodos , Calpaína/metabolismo , Fluorescencia , Colorantes Fluorescentes , Imagen Molecular/métodos , Células Musculares/metabolismo , Proteínas Musculares/metabolismo , Animales , Calpaína/genética , Transferencia Resonante de Energía de Fluorescencia , Expresión Génica , Humanos , Ratones , Proteínas Musculares/genética
11.
J Cell Biol ; 219(3)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32211891

RESUMEN

Distal appendages (DAs) of the mother centriole are essential for the initial steps of ciliogenesis in G1/G0 phase of the cell cycle. DAs are released from centrosomes in mitosis by an undefined mechanism. Here, we show that specific DAs lose their centrosomal localization at the G2/M transition in a manner that relies upon Nek2 kinase activity to ensure low DA levels at mitotic centrosomes. Overexpression of active Nek2A, but not kinase-dead Nek2A, prematurely displaced DAs from the interphase centrosomes of immortalized retina pigment epithelial (RPE1) cells. This dramatic impact was also observed in mammary epithelial cells with constitutively high levels of Nek2. Conversely, Nek2 knockout led to incomplete dissociation of DAs and cilia in mitosis. As a consequence, we observed the presence of a cilia remnant that promoted the asymmetric inheritance of ciliary signaling components and supported cilium reassembly after cell division. Together, our data establish Nek2 as an important kinase that regulates DAs before mitosis.


Asunto(s)
Centriolos/enzimología , Cilios/enzimología , Células Epiteliales/enzimología , Mitosis , Quinasas Relacionadas con NIMA/metabolismo , Epitelio Pigmentado de la Retina/enzimología , Animales , Sitios de Unión , Línea Celular , Centriolos/genética , Cilios/genética , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular , Células Madre Hematopoyéticas/enzimología , Humanos , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/enzimología , Ratones , Proteínas de Microtúbulos/genética , Proteínas de Microtúbulos/metabolismo , Quinasas Relacionadas con NIMA/genética , Unión Proteica , Epitelio Pigmentado de la Retina/citología , Transducción de Señal , Factores de Tiempo
12.
Biochim Biophys Acta Proteins Proteom ; 1868(7): 140411, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32200007

RESUMEN

Calpain-3 (CAPN3), a 94-kDa member of the calpain protease family, is abundant in skeletal muscle. Mutations in the CAPN3 gene cause limb girdle muscular dystrophy type 2A, indicating that CAPN3 plays important roles in muscle physiology. CAPN3 has several unique features. A crystallographic study revealed that its C-terminal penta-EF-hand domains form a homodimer, suggesting that CAPN3 functions as a homodimeric protease. To analyze complex formation of CAPN3 in a more convenient manner, we performed blue native polyacrylamide gel electrophoresis and found that the observed molecular weight of native CAPN3, as well as recombinant CAPN3, was larger than 240 kDa. Further analysis by cross-linking and sequential immunoprecipitation revealed that CAPN3 in fact forms a homotrimer. Trimer formation was abolished by the deletion of the PEF domain, but not the CAPN3-specific insertion sequences NS, IS1, and IS2. The PEF domain alone formed a homodimer, as reported, but addition of the adjacent CBSW domain to its N-terminus reinforced the trimer-forming property. Collectively, these results suggest that CAPN3 forms a homotrimer in which the PEF domain's dimer-forming ability is influenced by other domains.


Asunto(s)
Calpaína/metabolismo , Proteínas Musculares/metabolismo , Distrofia Muscular de Cinturas/metabolismo , Animales , Calpaína/química , Calpaína/genética , Línea Celular , Motivos EF Hand , Femenino , Predisposición Genética a la Enfermedad/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/química , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Cinturas/genética , Mutagénesis Insercional , Mutación , Dominios Proteicos
13.
Nat Commun ; 11(1): 903, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060285

RESUMEN

Centrosomes are essential organelles with functions in microtubule organization that duplicate once per cell cycle. The first step of centrosome duplication is the daughter centriole formation followed by the pericentriolar material recruitment to this centriole. This maturation step was termed centriole-to-centrosome conversion. It was proposed that CEP295-dependent recruitment of pericentriolar proteins drives centriole conversion. Here we show, based on the analysis of proteins that promote centriole biogenesis, that the developing centriole structure helps drive centriole conversion. Depletion of the luminal centriole protein CEP44 that binds to the A-microtubules and interacts with POC1B affecting centriole structure and centriole conversion, despite CEP295 binding to centrioles. Impairment of POC1B, TUBE1 or TUBD1, which disturbs integrity of centriole microtubules, also prevents centriole-to-centrosome conversion. We propose that the CEP295, CEP44, POC1B, TUBE1 and TUBD1 centriole biogenesis pathway that functions in the centriole lumen and on the cytoplasmic side is essential for the centriole-to-centrosome conversion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Centrosoma/metabolismo , Proteínas de Ciclo Celular/genética , Centriolos/genética , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Unión Proteica , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
14.
Nat Cell Biol ; 21(9): 1138-1151, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31481795

RESUMEN

One of the first steps in mitotic spindle assembly is the dissolution of the centrosome linker followed by centrosome separation driven by EG5, a tetrameric plus-end-directed member of the kinesin-5 family. However, even in the absence of the centrosome linker, the two centrosomes are kept together by an ill-defined microtubule-dependent mechanism. Here we show that KIFC3, a minus-end-directed kinesin-14, provides microtubule-based centrosome cohesion. KIFC3 forms a homotetramer that pulls the two centrosomes together via a specific microtubule network. At mitotic onset, KIFC3 activity becomes the main driving force of centrosome cohesion to prevent premature spindle formation after linker dissolution as it counteracts the increasing EG5-driven pushing forces. KIFC3 is eventually inactivated by NEver in mitosis-related Kinase 2 (NEK2) to enable EG5-driven bipolar spindle assembly. We further show that persistent centrosome cohesion in mitosis leads to chromosome mis-segregation. Our findings reveal a mechanism of spindle assembly that is evolutionary conserved from yeast to humans.


Asunto(s)
Centrosoma/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Segregación Cromosómica/fisiología , Células HeLa , Humanos , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Quinasas Relacionadas con NIMA/metabolismo
15.
Sci Transl Med ; 11(501)2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31316008

RESUMEN

Fibrosis is a common pathologic outcome of chronic disease resulting in the replacement of normal tissue parenchyma with a collagen-rich extracellular matrix produced by myofibroblasts. Although the progenitor cell types and cellular programs giving rise to myofibroblasts through mesenchymal transition can vary between tissues and diseases, their contribution to fibrosis initiation, maintenance, and progression is thought to be pervasive. Here, we showed that the ability of transforming growth factor-ß (TGFß) to efficiently induce myofibroblast differentiation of cultured epithelial cells, endothelial cells, or quiescent fibroblasts is dependent on the induced expression and activity of dimeric calpains, a family of non-lysosomal cysteine proteases that regulate a variety of cellular events through posttranslational modification of diverse substrates. siRNA-based gene silencing demonstrated that TGFß-induced mesenchymal transition of a murine breast epithelial cell line was dependent on induction of expression of calpain 9 (CAPN9), an isoform previously thought to be restricted to the gastrointestinal tract. Mice lacking functional CAPN9 owing to biallelic targeting of Capn9 were viable and fertile but showed overt protection from bleomycin-induced lung fibrosis, carbon tetrachloride-induced liver fibrosis, and angiotensin II-induced cardiac fibrosis and dysfunction. A predicted loss-of-function allele of CAPN9 is common in Southeast Asia, with the frequency of homozygosity matching the prediction of Hardy-Weinberg equilibrium. Together with the highly spatially restricted pattern of CAPN9 expression under physiologic circumstances and the heartiness of the murine knockout, these data provide a strong signature for tolerance of therapeutic strategies for fibrosis aimed at CAPN9 antagonism.


Asunto(s)
Calpaína/metabolismo , Transición Epitelial-Mesenquimal , Terapia Molecular Dirigida , Factor de Crecimiento Transformador beta/farmacología , Angiotensina II , Animales , Bleomicina , Proteínas de Unión al Calcio/farmacología , Calpaína/antagonistas & inhibidores , Calpaína/deficiencia , Calpaína/genética , Tetracloruro de Carbono , Línea Celular , Perros , Fibrosis , Humanos , Isoenzimas/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/prevención & control , Masculino , Ratones Endogámicos C57BL , Miocardio/enzimología , Miocardio/patología , Biosíntesis de Proteínas/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Estabilidad del ARN/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
16.
J Cell Sci ; 131(18)2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30131441

RESUMEN

Cilia perform essential signalling functions during development and tissue homeostasis. A key event in ciliogenesis occurs when the distal appendages of the mother centriole form a platform that docks ciliary vesicles and removes CP110-Cep97 inhibitory complexes. Here, we analysed the role of LRRC45 in appendage formation and ciliogenesis. We show that the core appendage proteins Cep83 and SCLT1 recruit LRRC45 to the mother centriole. Once there, LRRC45 recruits the keratin-binding protein FBF1. The association of LRRC45 with the basal body of primary and motile cilia in both differentiated and stem cells reveals a broad function in ciliogenesis. In contrast to the appendage components Cep164 and Cep123, LRRC45 was not essential for either docking of early ciliary vesicles or for removal of CP110. Rather, LRRC45 promotes cilia biogenesis in CP110-uncapped centrioles by organising centriolar satellites, establishing the transition zone and promoting the docking of Rab8 GTPase-positive vesicles. We propose that, instead of acting solely as a platform to recruit early vesicles, centriole appendages form discrete scaffolds of cooperating proteins that execute specific functions that promote the initial steps of ciliogenesis.


Asunto(s)
Axonema/metabolismo , Proteínas Portadoras/genética , Cilios/metabolismo , Proteínas de la Membrana/genética , Proteínas Portadoras/metabolismo , Humanos , Proteínas de la Membrana/metabolismo
17.
Proc Natl Acad Sci U S A ; 115(10): E2246-E2253, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463719

RESUMEN

The centrosome linker proteins C-Nap1, rootletin, and CEP68 connect the two centrosomes of a cell during interphase into one microtubule-organizing center. This coupling is important for cell migration, cilia formation, and timing of mitotic spindle formation. Very little is known about the structure of the centrosome linker. Here, we used stimulated emission depletion (STED) microscopy to show that each C-Nap1 ring at the proximal end of the two centrioles organizes a rootletin ring and, in addition, multiple rootletin/CEP68 fibers. Rootletin/CEP68 fibers originating from the two centrosomes form a web-like, interdigitating network, explaining the flexible nature of the centrosome linker. The rootletin/CEP68 filaments are repetitive and highly ordered. Staggered rootletin molecules (N-to-N and C-to-C) within the filaments are 75 nm apart. Rootletin binds CEP68 via its C-terminal spectrin repeat-containing region in 75-nm intervals. The N-to-C distance of two rootletin molecules is ∼35 to 40 nm, leading to an estimated minimal rootletin length of ∼110 nm. CEP68 is important in forming rootletin filaments that branch off centrioles and to modulate the thickness of rootletin fibers. Thus, the centrosome linker consists of a vast network of repeating rootletin units with C-Nap1 as ring organizer and CEP68 as filament modulator.


Asunto(s)
Centriolos/metabolismo , Centrosoma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas/metabolismo , Secuencias de Aminoácidos , Centriolos/química , Centriolos/genética , Centrosoma/química , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Células HeLa , Humanos , Interfase , Microscopía , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Unión Proteica , Proteínas/química , Proteínas/genética , ARNt Metiltransferasas
19.
Nat Commun ; 8: 16017, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28681838

RESUMEN

The presence of senescent, transformed or damaged cells can impair tissue function or lead to tumorigenesis; therefore, organisms have evolved quality control mechanisms to eliminate them. Here, we show that YAP activation induced by inactivation of the Hippo pathway specifically in damaged hepatocytes promotes their selective elimination by using in vivo mosaic analysis in mouse liver. These damaged hepatocytes migrate into the hepatic sinusoids, undergo apoptosis and are engulfed by Kupffer cells. In contrast, YAP activation in undamaged hepatocytes leads to proliferation. Cellular stresses such as ethanol that damage both liver sinusoidal endothelial cells and hepatocytes switch cell fate from proliferation to migration/apoptosis in the presence of activated YAP. This involves the activation of CDC42 and Rac that regulate cell migration. Thus, we suggest that YAP acts as a stress sensor that induces elimination of injured cells to maintain tissue and organ homeostasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Hepatocitos/metabolismo , Hígado/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína de Unión al GTP cdc42/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Tetracloruro de Carbono/toxicidad , Proteínas de Ciclo Celular , Movimiento Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Etanol/toxicidad , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Vía de Señalización Hippo , Macrófagos del Hígado/citología , Macrófagos del Hígado/efectos de los fármacos , Macrófagos del Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocrotalina/toxicidad , Fagocitosis/efectos de los fármacos , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Señalizadoras YAP , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo
20.
J Biol Chem ; 291(53): 27313-27322, 2016 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-27881674

RESUMEN

Calpains (CAPN) are a family of Ca2+-dependent cysteine proteases that regulate various cellular functions by cleaving diverse substrates. Of the 15 mammalian calpains, CAPN8 and CAPN9 are two that are expressed predominantly in the gastrointestinal tract, where they interact to form a protease complex, termed G-calpain. However, because native G-calpain exhibits a highly restricted expression pattern, it has never been purified, and the interactions between CAPN8 and CAPN9 have not been characterized. Here, we clarified the molecular nature of G-calpain by using recombinant proteins and transgenic mice expressing FLAG-tagged CAPN8 (CAPN8-FLAG). Recombinant mouse CAPN8 and CAPN9 co-expressed in eukaryotic expression systems exhibited the same mobility as native mouse G-calpain in Blue Native-PAGE gels, and CAPN8-FLAG immunoprecipitation from stomach homogenates of the transgenic mice showed that CAPN9 was the only protein that associated with CAPN8-FLAG. These results indicated that G-calpain is a heterodimer of CAPN8 and CAPN9. In addition, active recombinant G-calpain was expressed and purified using an in vitro translation system, and the purified protease exhibited enzymatic properties that were comparable with that of calpain-2. We found that an active-site mutant of CAPN8, but not CAPN9, compromised G-calpain's substrate cleavage activity, and that the N-terminal helix region of CAPN8 and the C-terminal EF-hands of CAPN8 and CAPN9 were involved in CAPN8/9 dimerization. Furthermore, CAPN8 protein in Capn9-/- mice was almost completely lost, whereas CAPN9 was only partially lost in Capn8-/- mice. Collectively, these results demonstrated that CAPN8 and CAPN9 function as catalytic and chaperone-like subunits, respectively, in G-calpain.


Asunto(s)
Calpaína/metabolismo , Mucosa Gástrica/metabolismo , Proteínas Recombinantes/metabolismo , Secuencia de Aminoácidos , Animales , Catálisis , Células Cultivadas , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Isoformas de Proteínas , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA