Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Chem ; 445: 138787, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382254

RESUMEN

In this study, a straightforward electrochemical aptasensor was developed to detect sulfadimethoxine (SDM). It included a glassy carbon electrode decorated by boron nitride quantum dots (BNQDs) and aptamer-functionalized nanoporous carbon (APT/CZ). CZ was first synthesized by calcinating a zeolitic imidazolate framework (ZIF-8). Then, the electroactive dye methylene blue (MB) was entrapped inside its pores. By attaching aptamer to the CZ surface, APT/CZ acted as a bioguard, which prevented the MB release. Therefore, the electrochemical signal of the entrapped MB was high in the absence of SDM. Introducing SDM caused the conformation of aptamers to change, and a large number of MB was released, which was removed by washing. Therefore, the detection strategy was done based on the change in the electrochemical signal intensity of MB. The aptasensor was applied to detect SDM at a concentration range of 10-17 to 10-7 M with a detection limit of 3.6 × 10-18 M.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanoporos , Sulfadimetoxina , Carbono , Técnicas Electroquímicas , Aptámeros de Nucleótidos/química , Límite de Detección , Oro/química , Azul de Metileno/química
2.
Mikrochim Acta ; 190(12): 482, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37999813

RESUMEN

A poly(n-butyl acrylate)-gold-MXene quantum dots (PBA-Au-MXene QD) nanocomposite-based biosensor is presented that is modified by unique antisense single-stranded DNA (ssDNA) and uses the electrochemical detection methods of DPV, CV, and EIS to early detect miR-122 as a breast cancer biomarker in real clinical samples. This fabrication method is based on advanced nanotechnology, at which a poly(n-butyl acrylate) (PBA) as a non-conductive polymer transforms into a conductive composite by incorporating Au-MXene QD. This biosensor had a limit of detection (LOD) of 0.8 zM and a linear range from 0.001 aM to 1000 nM, making it capable of detecting the low concentrations of miR-122 in patient samples. Moreover, it allows approximately 100% sensitivity and 100% specificity for miR-122 without extraction. The synthesis and detection characteristics were evaluated by different complementary tests such as AFM, FTIR, TEM, and FESEM. This new biosensor can have a high potential in clinical applications to detect breast cancer early and hence improve patient outcomes.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , MicroARNs , Humanos , Femenino , Biomarcadores de Tumor , Neoplasias de la Mama/diagnóstico , Técnicas Biosensibles/métodos
3.
Mikrochim Acta ; 190(8): 293, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37458847

RESUMEN

A novel genosensor was developed for rotavirus specific cDNA sequence detection. The genosensor was comprised of hierarchical flower-like gold nanostructures, MXene, and polypyrrole (HFGNs/MXene/PPY) nanocomposite as a signal amplification tag, specific antisense ssDNA oligonucleotide as a recognition bioelement, and methylene blue (MB) as a redox marker. The morphological and electrochemical features of the biosensor were first tested and optimized and the high performance of the platform was confirmed in terms of sensitivity and reproducibility. Then, 20 rotavirus RNA isolated from clinical and cell-cultured samples (10 positive and 10 negative confirmed by RT-PCR and electrophoresis methods) were evaluated by the genosensor. The analysis results revealed that the genosensor is able to differentiate successfully between the positive and negative control groups. The developed genosensor for rotavirus RNA detection presented an excellent limit of detection of ∼ 0.8 aM and a determination  range of  10-18 and 10-7 M. In addition, the ssDNA/HFGNs/MXene/PPY/GCE showed high selectivity and long-term stability of ~ 24 days. Therefore, this novel genosensor would be of great benefit for the clinical diagnosis of rotavirus.


Asunto(s)
Nanocompuestos , Rotavirus , Polímeros/química , Pirroles/química , Rotavirus/genética , Oro/química , Reproducibilidad de los Resultados , Nanocompuestos/química , ADN de Cadena Simple/genética , ARN
4.
Talanta ; 255: 124247, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603443

RESUMEN

Cancer is one of the leading causes of death worldwide and a crisis for global health. Breast cancer is the second most common cancer globally. In the perusal, a novel electrochemical biosensor amplified with hierarchical flower-like gold, poly (n-butyl acrylate), and MXene (AuHFGNs/PnBA-MXene) nanocomposite and activated by highly special antisense ssDNA (single-stranded DNA) provide a promising alternative for miRNA-122 detection as a biomarker of breast cancer. The biosensor presented a detection limit of 0.0035 aM (S/N = 3) with a linear range from 0.01 aM to 10 nM. The platform was tried on 20 breast cancer miRNAs extracted from actual serum specimens (10 positives and 10 negatives). Founded on the quantitatively obtained outcomes and statistic analysis (t-test, box-graph, receiver performance characteristic curve, and cut-off amount), the biosensor showed a meaningful discrepancy between the native and positive groups with 100% specificity and 100% sensitivity. While, RT-qPCR showed less specificity and sensitivity (70% specificity, 100% sensitivity) than the proposed biosensor. To assess the quantitative capacity and biosensor detection limit for clinical tests, the biosensor diagnosis performance for continually diluted miRNA extracted from patients was compared to that gained by RT-qPCR results, indicating that the biosensor detection limit was lower than RT-qPCR. ssDNA/AuHFGN/PnBA-MXene/GCE displayed little cross-reaction with other sequences and also showed desirable stability, reproducibility, and specificity and stayed stable until 32 days. As a result, the designed biosensor can perform as a hopeful method for diagnosis applications.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , MicroARNs , Nanocompuestos , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Reproducibilidad de los Resultados , Técnicas Electroquímicas/métodos , Biomarcadores , ADN de Cadena Simple/genética , Técnicas Biosensibles/métodos , Oro , Límite de Detección
5.
Front Bioeng Biotechnol ; 10: 984336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091438

RESUMEN

Breast cancer is the second most common cancer worldwide. Prognosis and timely treatment can reduce the illness or improve it. The use of nanomaterials leads to timely diagnosis and effective treatment. MXenes are a 2D material with a unique composition of attributes, containing significant electrical conductance, high optical characteristics, mechanical consistency, and excellent optical properties. Current advances and insights show that MXene is far more promising in biotechnology applications than current nanobiotechnology systems. MXenes have various applications in biotechnology and biomedicine, such as drug delivery/loading, biosensor, cancer treatment, and bioimaging programs due to their high surface area, excellent biocompatibility, and physicochemical properties. Surface modifications MXenes are not only biocompatible but also have multifunctional properties, such as aiming ligands for preferential agglomeration at the tumor sites for photothermal treatment. Studies have shown that these nanostructures, detection, and breast cancer therapy are more acceptable than present nanosystems in in vivo and in vitro. This review article aims to investigate the structure of MXene, its various synthesis methods, its application to cancer diagnosis, cytotoxicity, biodegradability, and cancer treatment by the photothermal process (in-vivo and in-vitro).

6.
Biosens Bioelectron ; 207: 114209, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35339072

RESUMEN

The sudden increase of the COVID-19 outbreak and its continued growth with mutations in various forms has created a global health crisis as well as devastating social and economic effects over the past two years. In this study, a screen-printed carbon electrode reinforced with boron nitride quantum dots/flower-like gold nanostructures (BNQDs/FGNs/SPCE) and functionalized by highly specific antisense DNA oligonucleotide presents an alternative and promising solution for targeting SARS-CoV-2 RNA without nucleic acid amplification. The platform was tested on 120 SARS-CoV-2 RNA isolated from real clinical samples (60 positive and 60 negative confirmed by conventional RT-PCR method). Based on obtained quantitative results and statistical analysis (box-diagram, cutoff value, receiver operating characteristic curve, and t-test), the biosensor revealed a significant difference between the two positive and negative groups with 100% sensitivity and 100% specificity. To evaluate the quantitation capacity and detection limit of the biosensor for clinical trials, the detection performance of the biosensor for continuously diluted RNA isolated from SARS-CoV-2-confirmed patients was compared to those obtained by RT-PCR, demonstrating that the detection limit of the biosensor is lower than or comparable to that of RT-PCR. The ssDNA/BNQDs/FGNs/SPCE showed negligible cross-reactivity with RNA fragments isolated from Influenza A (IAV) clinical samples and also remained stable for up to 14 days. In conclusion, the fabricated biosensor may serve as a promising tool for point-of-care applications.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanoestructuras , Puntos Cuánticos , Técnicas Biosensibles/métodos , Compuestos de Boro , COVID-19/diagnóstico , Oro , Humanos , ARN Viral/genética , SARS-CoV-2/genética , Sensibilidad y Especificidad
7.
Talanta ; 238(Pt 2): 123049, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801906

RESUMEN

Mycobacterium simiae has been reported to be the most prevalent species of Nontuberculous mycobacteria (NTM) in many countries. As both phenotypic and molecular detection of M. simiae and other NTMs have limitations, finding an accurate, fast, and low-cost diagnostic method is critical for the management of infections. Here, we report the development of a new type of label-free electrochemical biosensor using a gold electrode decorated with l-cysteine/PAMAM dendrimer for specific targeting of M. simiae ITS sequence. DNA hybridization was monitored by measuring changes in the free guanine electrical signal with changing ssDNA target concentrations by differential pulse voltammetry (DPV) method. Response surface methodology (RSM) was applied for the optimization of variables affecting biosensor response. Under optimal conditions, the biosensor revealed a wide linear range from 10-14 M to 10-6 M and a detection limit of 1.40 fM. The fabricated biosensor showed an excellent selectivity to M. simiae in the presence of other similar pathogenic bacteria. Moreover, experimental results confirmed that this biosensor exhibited great precision and high reproducibility, hence provides a low-cost, label-free, and faster detection analysis, representing a novel strategy in detecting other NTMs.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , ADN , Pruebas Diagnósticas de Rutina , Oro , Mycobacterium , Micobacterias no Tuberculosas , Reproducibilidad de los Resultados
8.
Talanta ; 234: 122662, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34364470

RESUMEN

A novel and unique ratiometric electrochemical sensing strategy for highly reliable and selective simultaneous quantification of Irinotecan (IRI) and 5-Fluorouracil (5-FU) has been developed based on Pd-Au/MWCNT-rGO nanocomposite. Introduction of Pd-Au/MWCNT-rGO significantly improved the speed of electron transport, specific surface area, and electrical catalytic ability of sensing system due to synergistic effect of Pd-Au bimetallic nanoparticles and MWCNT-rGO hybrid structure. The assay strategy was based on the use of ferrocene (Fc) as reference electroactive substance and IRI and 5-FU as analytes with three oxidation peaks at different potentials (Fc at +0.20 V, IRI at +0.58 V, and 5-FU at +1.17 V). The oxidation peak currents of the IRI and 5-FU were gradually enhanced while that of Fc remained almost constant with continuous adding of IRI and 5-FU. By using IIRI/IFc and I5-FU/IFc signals as output, the designed ratiometric system showed good performance with a wide linear range of 0.05-40 µM for IRI and 0.05-75 µM for 5-FU and low detection limit of 0.0061 µM and 0.0094 µM for IRI and 5-FU, respectively. This study proved that ratiometric strategy is able to eliminate disturbance caused by the sensing environment and possess high sensitivity, reproducibility, stability, and selectivity toward anticancer drugs detection, over potential interferents as well as opens a new procedure for reliable and selective simultaneous analysis of other analytes.


Asunto(s)
Antineoplásicos , Técnicas Biosensibles , Técnicas Electroquímicas , Oro , Límite de Detección , Reproducibilidad de los Resultados
9.
Food Chem ; 357: 129782, 2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33894570

RESUMEN

The overuse of synthetic dyes in food products has gradually increased in recent years, resulting food safety and human health has become a global issue. An innovative design of a magnetic molecularly imprinted polymer (Fe3O4@UiO-66-NH2@MIP) for efficient, fast, and selective determination of sunset yellow (SY) from different food products was described in this study. The absorption properties of Fe3O4@UiO-66-NH2@MIP were elucidated by adsorption kinetics, isotherms, reusability, and selectivity experiments. Because of the incorporation of porous Fe3O4@UiO-66-NH2nanocomposite into molecularly imprinted polymer an efficient nanosorbent with a short equilibrium time, a high adsorption capacity, and a good imprinting factor was finally obtained. The porous Fe3O4@UiO-66-NH2@MIP are also used for quantification of the SY. Under optimal conditions, good linearity (R2 0.9964) in the range of 1.0-120 mg L-1 and a low limit of detection (0.41 mg L-1) was observed with satisfactory recoveries (92.50-106.1%) and excellent reusability (RSD ≤ 6.6% after 12 cycles).

10.
Talanta ; 226: 122099, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33676656

RESUMEN

An important issue in the prognosis of tuberculosis (TB) is a short period between correct diagnosis and start the suitable antibiotic therapy. So, a rapid and valid method for detection of Mycobacterium tuberculosis (M. tb) complex is considered as a necessity. Herein, a rapid, low-cost, and PCR-free DNA biosensor was developed based on multi-walled carbon nanotubes (MWCNTs), polypyrrole (PPy), and hydroxyapatite nanoparticles (HAPNPs) for highly sensitive and specific recognition of M.tb. The biosensor consisted of M.tb ssDNA probe covalently attached to the HANPs/PPy/MWCNTs/GCE surface that hybridized to a complementary target sequence to form a duplex DNA. The M.tb target recognition was based on the oxidation signal of the electroactive Methylene Blue (MB) on the surface of the modified GCE using differential pulse voltammetry (DPV) method. It is worth to mention that for the first time Plackett-Burman (PB) screening design and response surface method (RSM) based on central composite design (CCD) was applied as a powerful and an efficient approach to find optimal conditions for maximum M.tb biosensor performance leading to simplicity and rapidity of operation. The proposed DNA biosensor exhibits a wide detection range from 0.25 to 200.0 nM with a low detection limit of 0.141 nM. The performance of designed biosensor for clinical diagnosis and practical applications was revealed through hybridization between DNA probe-modified GCE and extracted DNA from sputum clinical samples.


Asunto(s)
Técnicas Biosensibles , Mycobacterium tuberculosis , Nanocompuestos , Nanotubos de Carbono , ADN/genética , Técnicas Electroquímicas , Mycobacterium tuberculosis/genética , Polímeros , Pirroles
11.
Biotechnol Appl Biochem ; 68(6): 1281-1306, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33044005

RESUMEN

Diabetic foot ulcers (DFUs) are chronic severe complications of diabetes disease and remain a worldwide clinical challenge with social and economic consequences. Diabetic wounds can cause infection, amputation of lower extremities, and even death. Several factors including impaired angiogenesis, vascular insufficiency, and bacterial infections result in a delayed process of wound healing in diabetic patients. Treatment of wound infections using traditional antibiotics has become a critical status. Thus, finding new therapeutic strategies to manage diabetic wounds is urgently needed. Nanotechnology has emerged as an efficient approach for this purpose. This review aimed to summarize recent advances using nanotechnology for the treatment of diabetic wounds.


Asunto(s)
Antibacterianos/farmacología , Diabetes Mellitus/tratamiento farmacológico , Pie Diabético/tratamiento farmacológico , Nanotecnología , Cicatrización de Heridas/efectos de los fármacos , Humanos
12.
J Pharm Biomed Anal ; 161: 12-19, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30142492

RESUMEN

A highly efficient electrochemical sensor for the analysis of anticancer drug 5-fluorouracil (5-FU), is fabricated based on silver nanoparticles-polyaniline nanotube (AgNPs@PANINTs). AgNPs@PANINTs nanocomposite has been synthesized by a simple one-step method. Synthesized AgNPs@PANINTs nanocomposite was studied by Fourier transform infrared spectrometry, Scanning Electron Microscopy and Energy Dispersive X-ray. The fabricated PANINTs@AgNPs PGE was applied to the electrochemical sensing of 5-FU. Cyclic voltammetry and differential pulse voltammetry experiments illustrated high electro activity for the AgNPs@PANINTs nanocomposite. The study was explored using the Taguchi experimental design method. Electrochemical measurements using differential pulse voltammetry showed a wide linear relationship between 5-FU concentration and peak height within the range 1.0-300.0 µM with a low detection limit (0.06 µM). Also, the fabricated sensor showed excellent selectivity in the presence of two anticancer drugs and a number of other interfering compounds. The as-prepared sensor showed to be a promising device for a simple, rapid, and direct analysis of 5-FU.


Asunto(s)
Compuestos de Anilina/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/instrumentación , Fluorouracilo/análisis , Nanopartículas del Metal/química , Nanocompuestos/química , Plata/química , Límite de Detección , Microscopía Electrónica de Rastreo , Nanocompuestos/ultraestructura , Nanotubos , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier
13.
Biosens Bioelectron ; 120: 22-29, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30144642

RESUMEN

The simultaneous measurement of the concentration of anticancer drugs with a fast, sensitive and accurate method in biological samples is a challenge for better monitoring of drug therapy and better determine the pharmacokinetics. An electrochemical sensor was developed for the simultaneous determination of anticancer drugs, Ifosfamide (IFO) and Etoposide (ETO) based on pencil graphite electrode modified with Au/Pd@rGO nanocomposite decorated with poly (L-Cysteine). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were utilized to study the properties of the modified electrode. The electrochemical behavior of IFO and ETO on the Au/Pd@rGO@p(L-Cys) modified electrode was investigated by cyclic voltammetry and differential pulse voltammetry (DPV) techniques and the obtained results confirmed its efficiency for the individual and simultaneous sensing of IFO and ETO. After optimization of electrochemical parameters, the fabricated sensor presented excellent performance in simultaneous determination of IFO and ETO with a wide linear range from 0.10 to 90.0 µM and 0.01 to 40.0 µM and low detection limits (3 Sb/m) of 9.210 nM and 0.718 nM, respectively. In addition, this study proved that the constructed sensor could be useful to simultaneous analysis of IFO and ETO in biological samples and pharmaceutical compounds.


Asunto(s)
Técnicas Biosensibles/métodos , Cisteína/química , Técnicas Electroquímicas , Etopósido/análisis , Ifosfamida/análisis , Nanocompuestos/química , Antineoplásicos/análisis , Electrodos , Etopósido/sangre , Grafito/química , Ifosfamida/sangre , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...