Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Br J Clin Pharmacol ; 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072775

RESUMEN

AIMS: The aim of this study is to demonstrate the use of PBPK modelling to explore the impact of ethnic differences on drug PK. METHODS: A PBPK model developed for lansoprazole was used to predict the clinical PK of lansoprazole in Japanese subjects by incorporating the physiological parameters of a Japanese population into the model. Further verification of the developed Japanese population with clinical studies involving eight other CYP substrates-omeprazole, ticlopidine, alprazolam, midazolam, nifedipine, cinacalcet, paroxetine and dextromethorphan-was also carried out. RESULTS: The PK of lansoprazole in both Caucasian and Japanese subjects was well predicted by the model as the observed data were within the 5th and 95th percentiles across all the clinical studies. In age- and sex-matched simulations in both the Caucasian and Japanese populations, the predicted PK (mean ± SD) of a single oral dose of 30-mg lansoprazole was higher in the Japanese population in all cases, with more than twofold higher AUC of 5.98 ± 6.43 mg/L.h (95% CI: 4.72, 7.24) vs. 2.46 ± 2.45 mg/L.h (95% CI: 1.98, 2.94) in one scenario. In addition, in two out of the nine clinical DDIs of lansoprazole and the additional CYP substrates simulated using the Japanese population, the predicted DDI in Japanese was more than 1.25-fold that in Caucasians, indicating an increased DDI liability. CONCLUSIONS: By accounting for various physiological parameters that characterize a population in a PBPK model, the impact of the different identified interethnic differences on the drug's PK can be explored, which can inform the adoption of drugs from one region to another.

2.
Clin Pharmacol Ther ; 114(6): 1264-1273, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37620290

RESUMEN

Patho-physiological changes in liver cirrhosis create portacaval shunts that allow blood flow to bypass the hepatic portal vein into the systemic circulation affecting drug pharmacokinetics (PKs). The objectives of this work were to implement a physiologically-based pharmacokinetic (PBPK) framework describing shunted blood flows in virtual patients with differing degrees of liver cirrhosis; and to assess the minimal and full PBPK model's performance using drugs with intermediate to high hepatic extraction. Single dose concentration-time profiles and PK parameters for oral ibrutinib, midazolam, propranolol, and buspirone were simulated in healthy volunteers (HVs) and subjects with cirrhosis (Child-Pugh severity score (CP-A, CP-B, or CP-C)). Model performance was verified by comparing predicted to observed fold-changes in PK parameters between HVs and cirrhotic subjects. The verified model was used to simulate the PK changes for simvastatin in patients with cirrhosis. The predicted area under the curve ratios (AUCCirr :AUCHV ) for ibrutinib were 3.38, 6.87, and 11.46 using the minimal PBPK model with shunt and 1.61, 2.58, and 4.33 without the shunt, these compared with observed values of 4.33, 8.14, and 9.04, respectively. For ibrutinib, propranolol, and buspirone, including a shunt in the PBPK model improved the prediction of the AUCCirr :AUCHV and maximum plasma concentration ratios (CmaxCirr :CmaxHV ). For midazolam, an intermediate extraction drug, the differences were less clear. Simulated simvastatin dose adjustments in cirrhosis suggested that 20 mg in CP-A and 10 mg in CP-B could be used clinically. A mechanistic model-informed understanding of the anatomic and pathophysiology of cirrhosis will facilitate improved dose prediction and adjustment in this vulnerable population.


Asunto(s)
Buspirona , Propranolol , Humanos , Midazolam , Cirrosis Hepática/tratamiento farmacológico , Simvastatina , Modelos Biológicos
3.
Pharmaceutics ; 15(7)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37514108

RESUMEN

Imatinib is mainly metabolised by CYP3A4 and CYP2C8 and is extensively bound to α-acid glycoprotein (AAG). A physiologically based pharmacokinetic (PBPK) model for imatinib describing the CYP3A4-mediated autoinhibition during multiple dosing in gastrointestinal stromal tumor patients with normal renal function was previously reported. After performing additional verification, the PBPK model was applied to predict the exposure of imatinib after multiple dosing in cancer patients with varying degrees of renal impairment. In agreement with the clinical data, there was a positive correlation between AAG levels and imatinib exposure. A notable finding was that for recovery of the observed data in cancer patients with moderate RI (CrCL 20 to 39 mL/min), reductions of hepatic CYP3A4 and CYP2C8 abundances, which reflect the effects of RI, had to be included in the simulations. This was not the case for mild RI (CrCL 40 to 50 mL/min). The results support the finding of the clinical study, which demonstrated that both AAG levels and the degree of renal impairment are key components that contribute to the interpatient variability associated with imatinib exposure. As indicated in the 2020 FDA draft RI guidance, PBPK modelling could be used to support an expanded inclusion of patients with RI in clinical studies.

4.
CPT Pharmacometrics Syst Pharmacol ; 11(7): 822-832, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35445542

RESUMEN

Physiologically-based pharmacokinetic (PBPK) modeling is being increasingly used in drug development to avoid unnecessary clinical drug-drug interaction (DDI) studies and inform drug labels. Thus, regulatory agencies are recommending, or indeed requesting, more rigorous demonstration of the prediction accuracy of PBPK platforms in the area of their intended use. We describe a framework for qualification of the Simcyp Simulator with respect to competitive and mechanism-based inhibition (MBI) of CYP1A2, CYP2D6, CYP2C8, CYP2C9, CYP2C19, and CYP3A4/5. Initially, a DDI matrix, consisting of a range of weak, moderate, and strong inhibitors and substrates with varying fraction metabolized by specific CYP enzymes that were susceptible to different degrees of inhibition, were identified. Simulations were run with 123 clinical DDI studies involving competitive inhibition and 78 clinical DDI studies involving MBI. For competitive inhibition, the overall prediction accuracy was good with an average fold error (AFE) of 0.91 and 0.92 for changes in the maximum plasma concentration (Cmax ) and area under the plasma concentration (AUC) time profile, respectively, as a consequence of the DDI. For MBI, an AFE of 1.03 was determined for both Cmax and AUC. The prediction accuracy was generally comparable across all CYP enzymes, irrespective of the isozyme and mechanism of inhibition. These findings provide confidence in application of the Simcyp Simulator (V19 R1) for assessment of the DDI potential of drugs in development either as inhibitors or victim drugs of CYP-mediated interactions. The approach described herein and the identified DDI matrix can be used to qualify subsequent versions of the platform.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Interacciones Farmacológicas , Modelos Biológicos , Área Bajo la Curva , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos
5.
Toxicol In Vitro ; 79: 105269, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34757180

RESUMEN

Read-across approaches often remain inconclusive as they do not provide sufficient evidence on a common mode of action across the category members. This read-across case study on thirteen, structurally similar, branched aliphatic carboxylic acids investigates the concept of using human-based new approach methods, such as in vitro and in silico models, to demonstrate biological similarity. Five out of the thirteen analogues have preclinical in vivo studies. Three out of them induced lipid accumulation or hypertrophy in preclinical studies with repeated exposure, which leads to the read-across hypothesis that the analogues can potentially induce hepatic steatosis. To confirm the selection of analogues, the expression patterns of the induced differentially expressed genes (DEGs) were analysed in a human liver model. With increasing dose, the expression pattern within the tested analogues got more similar, which serves as a first indication of a common mode of action and suggests differences in the potency of the analogues. Hepatic steatosis is a well-known adverse outcome, for which over 55 adverse outcome pathways have been identified. The resulting adverse outcome pathway (AOP) network, comprised a total 43 MIEs/KEs and enabled the design of an in vitro testing battery. From the AOP network, ten MIEs, early and late KEs were tested to systematically investigate a common mode of action among the grouped compounds. The targeted testing of AOP specific MIE/KEs shows that biological activity in the category decreases with side chain length. A similar trend was evident in measuring liver alterations in zebra fish embryos. However, activation of single MIEs or early KEs at in vivo relevant doses did not necessarily progress to the late KE "lipid accumulation". KEs not related to the read-across hypothesis, testing for example general mitochondrial stress responses in liver cells, showed no trend or biological similarity. Testing scope is a key issue in the design of in vitro test batteries. The Dempster-Shafer decision theory predicted those analogues with in vivo reference data correctly using one human liver model or the CALUX reporter assays. The case study shows that the read-across hypothesis is the key element to designing the testing strategy. In the case of a good mechanistic understanding, an AOP facilitates the selection of reliable human in vitro models to demonstrate a common mode of action. Testing DEGs, MIEs and early KEs served to show biological similarity, whereas the late KEs become important for confirmation, as progression from MIEs to AO is not always guaranteed.


Asunto(s)
Rutas de Resultados Adversos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/toxicidad , Animales , Simulación por Computador , Hígado Graso/inducido químicamente , Perfilación de la Expresión Génica , Humanos , Pez Cebra
6.
CPT Pharmacometrics Syst Pharmacol ; 10(11): 1382-1395, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34623770

RESUMEN

Tuberculosis (TB) remains a global health problem and there is an ongoing effort to develop more effective therapies and new combination regimes that can reduce duration of treatment. The purpose of this study was to demonstrate utility of a physiologically-based pharmacokinetic modeling approach to predict plasma and lung concentrations of 11 compounds used or under development as TB therapies (bedaquiline [and N-desmethyl bedaquiline], clofazimine, cycloserine, ethambutol, ethionamide, isoniazid, kanamycin, linezolid, pyrazinamide, rifampicin, and rifapentine). Model accuracy was assessed by comparison of simulated plasma pharmacokinetic parameters with healthy volunteer data for compounds administered alone or in combination. Eighty-four percent (area under the curve [AUC]) and 91% (maximum concentration [Cmax ]) of simulated mean values were within 1.5-fold of the observed data and the simulated drug-drug interaction ratios were within 1.5-fold (AUC) and twofold (Cmax ) of the observed data for nine (AUC) and eight (Cmax ) of the 10 cases. Following satisfactory recovery of plasma concentrations in healthy volunteers, model accuracy was assessed further (where patients' with TB data were available) by comparing clinical data with simulated lung concentrations (9 compounds) and simulated lung: plasma concentration ratios (7 compounds). The 5th-95th percentiles for the simulated lung concentration data recovered between 13% (isoniazid and pyrazinamide) and 88% (pyrazinamide) of the observed data points (Am J Respir Crit Care Med, 198, 2018, 1208; Nat Med, 21, 2015, 1223; PLoS Med, 16, 2019, e1002773). The impact of uncertain model parameters, such as the fraction of drug unbound in lung tissue mass (fumass ), is discussed. Additionally, the variability associated with the patient lung concentration data, which was sparse and included extensive within-subject, interlaboratory, and experimental variability (as well interindividual variability) is reviewed. All presented models are transparently documented and are available as open-source to aid further research.


Asunto(s)
Nivel de Atención , Tuberculosis , Antituberculosos/farmacocinética , Humanos , Isoniazida , Pirazinamida , Tuberculosis/tratamiento farmacológico
7.
Br J Clin Pharmacol ; 87(7): 2711-2722, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33068053

RESUMEN

AIMS: This study aims to develop and verify a physiologically based pharmacokinetic (PBPK) population model for the Chinese geriatric population in Simcyp. METHODS: Firstly, physiological information for the Chinese geriatric population was collected and later employed to develop the Chinese geriatric population model by recalibration of corresponding physiological parameters in the Chinese adult population model available in Simcyp (i.e., Chinese healthy volunteer model). Secondly, drug-dependent parameters were collected for six drugs with different elimination pathways (i.e., metabolized by CYP1A2, CYP3A4 or renal excretion). The drug models were then developed and verified by clinical data from Chinese adults, Caucasian adults and Caucasian elderly subjects to ensure that drug-dependent parameters are correctly inputted. Finally, the tested drug models in combination with the newly developed Chinese geriatric population model were applied to simulate drug concentration in Chinese elderly subjects. The predicted results were then compared with the observations to evaluate model prediction performance. RESULTS: Ninety-eight per cent of predicted AUC, 95% of predicted Cmax , and 100% of predicted CL values were within two-fold of the observed values, indicating all drug models were properly developed. The drug models, combined with the newly developed population model, were then used to predict pharmacokinetics in Chinese elderly subjects aged 60-93. The predicted AUC, Cmax , and CL values were all within two-fold of the observed values. CONCLUSION: The population model for the Chinese elderly subjects appears to adequately predict the concentration of the drug that was metabolized by CYP1A2, CYP3A4 or eliminated by renal clearance.


Asunto(s)
Citocromo P-450 CYP3A , Modelos Biológicos , Farmacocinética , Adulto , Anciano , Pueblo Asiatico , China , Simulación por Computador , Citocromo P-450 CYP1A2 , Humanos , Población Blanca
8.
J Pharm Sci ; 110(1): 314-324, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32590030

RESUMEN

Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important determinants of transporter-mediated drug-drug interactions (DDIs). Current studies assessed the OATP1B1 and OATP1B3-mediated DDI potential of vemurafenib, a kinase inhibitor drug with high protein binding and low aqueous solubility, using R-value and physiologically-based pharmacokinetic (PBPK) models. The total half-maximal inhibitory concentration (IC50,total) values of vemurafenib against OATP1B1 and OATP1B3 were determined in 100% human plasma in transporter-overexpressing human embryonic kidney 293 stable cell lines. The unbound fraction of vemurafenib in human plasma before (fu,plasma) and after addition into the uptake assay plate (fu,plasma,inc) were determined by rapid equilibrium dialysis. There was no statistically significant difference between fu,plasma and fu,plasma,inc. Vemurafenib IC50,total values against OATP1B1 and OATP1B3 are 175 ± 82 and 231 ± 26 µM, respectively. The R-values [R = 1 + fu,plasma × Iin,max/(fu,plasma,inc × IC50,total)] were then simplified as R = 1+Iin,max/IC50,total, and were 1.76 and 1.57 for OATP1B1 and OATP1B3, respectively. The simulated pravastatin AUC ratio was 1.28 when a single dose of pravastatin (40 mg) was co-administered with vemurafenib (960 mg, twice daily) at steady-state, compared to pravastatin alone. Both R-value and PBPK models predict that vemurafenib has the potential to cause OATP1B1- and OATP1B3-mediated DDIs.


Asunto(s)
Transportadores de Anión Orgánico , Vemurafenib/farmacología , Interacciones Farmacológicas , Células HEK293 , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado , Transportadores de Anión Orgánico Sodio-Independiente , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos , Vemurafenib/farmacocinética
9.
Eur J Pharm Sci ; 150: 105355, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32438273

RESUMEN

Paclitaxel is the backbone of standard chemotherapeutic regimens used in a number of malignancies and is frequently given with concomitant medications. Newly developed oncolytic agents, including tyrosine kinase inhibitors are often shown to be CYP3A4 and P-gp inhibitors. The aim of this study was to develop a PBPK model for intravenously administered paclitaxel in order to predict the incidence of neutropenia and to estimate the DDI potential as a victim drug. The dose-dependent effects on paclitaxel plasma protein binding, volume of distribution and drug clearance were considered for dose levels of 80 mg/m2, 135 mg/m2 and 175 mg/m2. A pharmacodynamics model that incorporate the impact of paclitaxel on the neutrophil was developed. The relative metabolic clearance via CYP3A4 and CYP2C8, the renal clearance as well as P-gp mediated biliary clearance were incorporated in the model in order to assess the neutropenia in the presence of DDI. The developed PBPK-PD model was able to recover the drop in neutrophils observed after the administration of 175mg/m2 of paclitaxel over a 3-h duration. The mean nadir observed was 1.9 × 109 neutrophils/L and was attained after 10 days of treatment, and a fraction of 47% of the population was predicted to have at some point a neutropenia including 12% with severe neutropenia. In the case of concomitant administration of ketoconazole, 39% of the population was predicted to suffer from severe neutropenia. In summary, PBPK-PD modeling allows a priori prediction of DDIs and safety events involving complex combination therapies which are often utilized in an oncology setting.


Asunto(s)
Antineoplásicos Fitogénicos , Sistemas de Liberación de Medicamentos , Modelos Biológicos , Neoplasias/tratamiento farmacológico , Neutropenia/inducido químicamente , Paclitaxel , Adulto , Anciano , Antineoplásicos Fitogénicos/efectos adversos , Antineoplásicos Fitogénicos/farmacocinética , Antineoplásicos Fitogénicos/farmacología , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas , Femenino , Humanos , Indazoles , Cetoconazol/farmacología , Masculino , Persona de Mediana Edad , Neoplasias/metabolismo , Paclitaxel/efectos adversos , Paclitaxel/farmacocinética , Paclitaxel/farmacología , Pirimidinas/farmacocinética , Sulfonamidas/farmacocinética , Verapamilo/farmacocinética
10.
J Pharm Sci ; 108(10): 3443-3456, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31047942

RESUMEN

Organic anion transporting polypeptides (OATP)1B1 and OATP1B3 mediate hepatic uptake of many drugs including lipid-lowering statins. Current studies determined the OATP1B1/1B3-mediated drug-drug interaction (DDI) potential of mammalian target of rapamycin (mTOR) inhibitors, everolimus and sirolimus, using R-value and physiologically based pharmacokinetic models. Preincubation with everolimus and sirolimus significantly decreased OATP1B1/1B3-mediated transport even after washing and decreased inhibition constant values up to 8.3- and 2.9-fold for OATP1B1 and both 2.7-fold for OATP1B3, respectively. R-values of everolimus, but not sirolimus, were greater than the FDA-recommended cutoff value of 1.1. Physiologically based pharmacokinetic models predict that everolimus and sirolimus have low OATP1B1/1B3-mediated DDI potential against pravastatin. OATP1B1/1B3-mediated transport was not affected by preincubation with INK-128 (10 µM, 1 h), which does however abolish mTOR kinase activity. The preincubation effects of everolimus and sirolimus on OATP1B1/1B3-mediated transport were similar in cells before preincubation with vehicle control or INK-128, suggesting that inhibition of mTOR activity is not a prerequisite for the preincubation effects observed for everolimus and sirolimus. Nine potential phosphorylation sites of OATP1B1 were identified by phosphoproteomics; none of these are the predicted mTOR phosphorylation sites. We report the everolimus/sirolimus-preincubation-induced inhibitory effects on OATP1B1/1B3 and relatively low OATP1B1/1B3-mediated DDI potential of everolimus and sirolimus.


Asunto(s)
Interacciones Farmacológicas/fisiología , Everolimus/farmacocinética , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Sirolimus/farmacocinética , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transporte Biológico/fisiología , Línea Celular , Células HEK293 , Humanos
11.
Biopharm Drug Dispos ; 40(3-4): 135-150, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30921829

RESUMEN

Physiologically based pharmacokinetic (PBPK) modelling and simulation is a useful tool in predicting the PK profiles of a drug, assessing the effects of covariates such as demographics, ethnicity, genetic polymorphisms and disease status on the PK, and evaluating the potential of drug-drug interactions. We developed a Korean-specific virtual population for the SimCYP® Simulator (version 15 used) and evaluated the population's predictive performance using six substrate drugs (midazolam, S-warfarin, metoprolol, omeprazole, lorazepam and rosuvastatin) of five major drug metabolizing enzymes (DMEs) and two transporters. Forty-three parameters including the proportion of phenotypes in DMEs and transporters were incorporated into the Korean-specific virtual population. The simulated concentration-time profiles in Koreans were overlapped with most of the observed concentrations for the selected substrate drugs with a < 2-fold difference in clearance. Furthermore, we found some drug models within the SimCYP® library can be improved, e.g., the minor allele frequency of ABCG2 and the fraction metabolized by UGT2B15 should be incorporated for rosuvastatin and lorazepam, respectively. The Korean-specific population can be used to evaluate the impact of ethnicity on the PKs of a drug, particularly in various stages of drug development.


Asunto(s)
Pueblo Asiatico , Modelos Biológicos , Programas Informáticos , Adulto , Simulación por Computador , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Glucuronosiltransferasa/metabolismo , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Lorazepam/farmacocinética , Masculino , Metoprolol/farmacocinética , Midazolam/farmacocinética , Persona de Mediana Edad , Omeprazol/farmacocinética , Rosuvastatina Cálcica/farmacocinética , Warfarina/farmacocinética , Adulto Joven
12.
AAPS J ; 21(3): 42, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30887238

RESUMEN

A physiologically based pharmacokinetic (PBPK) model was used to simulate the impact of elevated levels of interleukin (IL)-6 on the exposure of several orally administered cytochrome P450 (CYP) probe substrates (caffeine, S-warfarin, omeprazole, dextromethorphan, midazolam, and simvastatin). The changes in exposure of these substrates in subjects with rheumatoid arthritis (and hence elevated IL-6 levels) compared with healthy subjects were predicted with a reasonable degree of accuracy. The PBPK model was then used to simulate the change in oral exposure of the probe substrates in North European Caucasian, Chinese, and Japanese population of patients with neuromyelitis optica (NMO) or NMO spectrum disorder with elevated plasma IL-6 levels (up to 100 pg/mL). Moderate interactions [mean AUC fold change, ≤ 2.08 (midazolam) or 2.36 (simvastatin)] was predicted for CYP3A4 probe substrates and weak interactions (mean AUC fold change, ≤ 1.29-1.97) were predicted for CYP2C19, CYP2C9, and CYP2D6 substrates. No notable interaction was predicted with CYP1A2. Although ethnic differences led to differences in simulated exposure for some of the probe substrates, there were no marked differences in the predicted magnitude of the change in exposure following IL-6-mediated suppression of CYPs. Decreased levels of serum albumin (as reported in NMO patients) had little impact on the magnitude of the simulated IL-6-mediated drug interactions. This PBPK modeling approach allowed us to leverage knowledge from different disease and ethnic populations to make predictions of cytokine-related DDIs in a rare disease population where actual clinical studies would otherwise be difficult to conduct.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Interleucina-6/metabolismo , Modelos Biológicos , Neuromielitis Óptica/tratamiento farmacológico , Enfermedades Raras/tratamiento farmacológico , Administración Oral , Adulto , Cafeína/administración & dosificación , Cafeína/farmacocinética , Ensayos Clínicos como Asunto , Simulación por Computador , Dextrometorfano/administración & dosificación , Dextrometorfano/farmacocinética , Regulación hacia Abajo , Desarrollo de Medicamentos , Interacciones Farmacológicas , Femenino , Humanos , Interleucina-6/sangre , Masculino , Midazolam/administración & dosificación , Midazolam/farmacocinética , Persona de Mediana Edad , Neuromielitis Óptica/sangre , Neuromielitis Óptica/etnología , Neuromielitis Óptica/metabolismo , Omeprazol/administración & dosificación , Omeprazol/farmacocinética , Enfermedades Raras/sangre , Enfermedades Raras/etnología , Enfermedades Raras/metabolismo , Albúmina Sérica Humana/análisis , Simvastatina/administración & dosificación , Simvastatina/farmacocinética , Warfarina/administración & dosificación , Warfarina/farmacocinética
13.
AAPS J ; 20(3): 47, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29541956

RESUMEN

Drug-induced cardiac arrhythmia, especially occurrence of torsade de pointes (TdP), has been a leading cause of attrition and post-approval re-labeling and withdrawal of many drugs. TdP is a multifactorial event, reflecting more than just drug-induced cardiac ion channel inhibition and QT interval prolongation. This presents a translational gap in extrapolating pre-clinical and clinical cardiac safety assessment to estimate TdP risk reliably, especially when the drug of interest is used in combination with other QT-prolonging drugs for treatment of diseases such as tuberculosis. A multi-scale mechanistic modeling framework consisting of physiologically based pharmacokinetics (PBPK) simulations of clinically relevant drug exposures combined with Quantitative Systems Toxicology (QST) models of cardiac electro-physiology could bridge this gap. We illustrate this PBPK-QST approach in cardiac risk assessment as exemplified by moxifloxacin, an anti-tuberculosis drug with abundant clinical cardiac safety data. PBPK simulations of moxifloxacin concentrations (systemic circulation and estimated in heart tissue) were linked with in vitro measurements of cardiac ion channel inhibition to predict the magnitude of QT prolongation in healthy individuals. Predictions closely reproduced the clinically observed QT interval prolongation, but no arrhythmia was observed, even at ×10 exposure. However, the same exposure levels in presence of physiological risk factors, e.g., hypokalemia and tachycardia, led to arrhythmic event in simulations, consistent with reported moxifloxacin-related TdP events. Application of a progressive PBPK-QST cardiac risk assessment paradigm starting in early development could guide drug development decisions and later define a clinical "safe space" for post-approval risk management to identify high-risk clinical scenarios.


Asunto(s)
Antibacterianos/toxicidad , Corazón/efectos de los fármacos , Síndrome de QT Prolongado/inducido químicamente , Moxifloxacino/toxicidad , Torsades de Pointes/inducido químicamente , Investigación Biomédica Traslacional , Algoritmos , Antibacterianos/farmacocinética , Canal de Potasio ERG1/antagonistas & inhibidores , Humanos , Modelos Biológicos , Moxifloxacino/farmacocinética , Medición de Riesgo
14.
J Pharm Sci ; 106(8): 2123-2135, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28373111

RESUMEN

Present studies determined the effects of pretreatment with rifampicin, an organic anion-transporting polypeptide (OATP) inhibitor, and the tyrosine kinase inhibitor dasatinib on OATP1B1- and OATP1B3-mediated transport, and evaluated the OATP-mediated drug-drug interaction potential of dasatinib using the static R-value and dynamic physiologically based pharmacokinetic models. Rifampicin and dasatinib pretreatment significantly decreased OATP1B1- and OATP1B3-mediated transport. Rifampicin pretreatment also significantly decreased [3H]-pitavastatin and [3H]-CCK-8 accumulation in human sandwich-cultured hepatocytes. Present studies revealed that estrone-3-sulfate is a less-sensitive OATP1B1 substrate than estradiol-17ß-glucuronide in assessing rifampicin pretreatment effects. Pretreatment with rifampicin and dasatinib reduced the inhibition constant (Ki) values against OATP1B1 by 3 and 2.1 fold and against OATP1B3 by 2.4 and 2.1 fold, respectively. The in vitro rifampicin Ki values after preincubation are comparable to the estimated in vivo Ki reported previously. Models predict that dasatinib has a low potential to cause OATP1B1- and OATP1B3-mediated drug-drug interactions. Time-lapse confocal microscopy demonstrated that rifampicin and dasatinib pretreatment did not affect plasma membrane localization of green-fluorescent protein-tagged OATP1B1 (GFP-OATP1B1) and GFP-OATP1B3 in human embryonic kidney 293 stable cell lines. In summary, we report novel findings that pretreatment with rifampicin and dasatinib potentiates the inhibitory effects toward OATP1B1 and OATP1B3 without affecting plasma membrane levels of the transporters.


Asunto(s)
Dasatinib/farmacología , Transportador 1 de Anión Orgánico Específico del Hígado/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Rifampin/farmacología , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/antagonistas & inhibidores , Transporte Biológico Activo/efectos de los fármacos , Células Cultivadas , Interacciones Farmacológicas , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células HEK293 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/metabolismo
15.
Biopharm Drug Dispos ; 38(3): 187-208, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28207929

RESUMEN

The metabolic capacity of the intestine and its importance as the initial barrier to systemic exposure can lead to underestimation of first-pass, and thus overestimation of oral bioavailability. However, the in vitro tools informing estimates of in vivo intestinal metabolism are limited by the complexity of the in vitro matrix preparation and uncertainty with the scaling factors for in vitro to in vivo extrapolation. A number of methods currently exist in the literature for the preparation of intestinal microsomes; however, the impact of key steps in the preparation procedure has not been critically assessed. In the current study, changes in enterocyte isolation, the impact of buffer constituents heparin and glycerol, as well as sonication as a direct method of homogenization were assessed systematically. Furthermore, fresh vs. frozen tissue samples and the impact of microsome freeze thawing was assessed. The rat intestinal microsomes were characterized for CYP content as well as metabolic activity using testosterone and 4-nitropheonol as probes for CYP and UGT activity, respectively. Comparisons in metabolic activity and scaled unbound intestinal intrinsic clearance (CLintu,gut ) were made to commercially available microsomes using 25 drugs with a diverse range of metabolic pathways and intestinal metabolic stabilities. An optimal, robust and reproducible microsomal preparation method for investigation of intestinal metabolism is proposed. The importance of characterization of the in vitro matrix and the potential impact of intestinal scaling factors on the in vitro-in vivo extrapolation of FG needs to be investigated further. © 2017 The Authors Biopharmaceutics & Drug Disposition Published by John Wiley & Sons Ltd.


Asunto(s)
Técnicas In Vitro/métodos , Mucosa Intestinal/metabolismo , Intestinos/citología , Microsomas/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Glucuronosiltransferasa/metabolismo , Masculino , Microsomas/enzimología , Ratas
17.
Drug Metab Dispos ; 44(6): 821-32, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27026679

RESUMEN

Using physiologically based pharmacokinetic modeling, we predicted the magnitude of drug-drug interactions (DDIs) for studies with rifampicin and seven CYP3A4 probe substrates administered i.v. (10 studies) or orally (19 studies). The results showed a tendency to underpredict the DDI magnitude when the victim drug was administered orally. Possible sources of inaccuracy were investigated systematically to determine the most appropriate model refinement. When the maximal fold induction (Indmax) for rifampicin was increased (from 8 to 16) in both the liver and the gut, or when the Indmax was increased in the gut but not in liver, there was a decrease in bias and increased precision compared with the base model (Indmax = 8) [geometric mean fold error (GMFE) 2.12 vs. 1.48 and 1.77, respectively]. Induction parameters (mRNA and activity), determined for rifampicin, carbamazepine, phenytoin, and phenobarbital in hepatocytes from four donors, were then used to evaluate use of the refined rifampicin model for calibration. Calibration of mRNA and activity data for other inducers using the refined rifampicin model led to more accurate DDI predictions compared with the initial model (activity GMFE 1.49 vs. 1.68; mRNA GMFE 1.35 vs. 1.46), suggesting that robust in vivo reference values can be used to overcome interdonor and laboratory-to-laboratory variability. Use of uncalibrated data also performed well (GMFE 1.39 and 1.44 for activity and mRNA). As a result of experimental variability (i.e., in donors and protocols), it is prudent to fully characterize in vitro induction with prototypical inducers to give an understanding of how that particular system extrapolates to the in vivo situation when using an uncalibrated approach.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas/fisiología , Rifampin/metabolismo , Administración Oral , Carbamazepina/metabolismo , Inducción Enzimática/fisiología , Tracto Gastrointestinal/metabolismo , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Modelos Biológicos , Fenobarbital/metabolismo , Fenitoína/metabolismo , ARN Mensajero/metabolismo
18.
AAPS J ; 18(3): 589-604, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26964996

RESUMEN

Quantifying the multiple processes which control and modulate the extent of oral bioavailability for drug candidates is critical to accurate projection of human pharmacokinetics (PK). Understanding how gut wall metabolism and hepatic elimination factor into first-pass clearance of drugs has improved enormously. Typically, the cytochrome P450s, uridine 5'-diphosphate-glucuronosyltransferases and sulfotransferases, are the main enzyme classes responsible for drug metabolism. Knowledge of the isoforms functionally expressed within organs of first-pass clearance, their anatomical topology (e.g. zonal distribution), protein homology and relative abundances and how these differ across species is important for building models of human metabolic extraction. The focus of this manuscript is to explore the parameters influencing bioavailability and to consider how well these are predicted in human from animal models or from in vitro to in vivo extrapolation. A unique retrospective analysis of three AstraZeneca molecules progressed to first in human PK studies is used to highlight the impact that species differences in gut wall metabolism can have on predicted human PK. Compared to the liver, pharmaceutical research has further to go in terms of adopting a common approach for characterisation and quantitative prediction of intestinal metabolism. A broad strategy is needed to integrate assessment of intestinal metabolism in the context of typical DMPK activities ongoing within drug discovery programmes up until candidate drug nomination.


Asunto(s)
Tracto Gastrointestinal/metabolismo , Absorción Intestinal/fisiología , Modelos Animales , Modelos Biológicos , Preparaciones Farmacéuticas/metabolismo , Animales , Disponibilidad Biológica , Sistema Enzimático del Citocromo P-450/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Predicción , Tracto Gastrointestinal/efectos de los fármacos , Humanos , Absorción Intestinal/efectos de los fármacos , Preparaciones Farmacéuticas/administración & dosificación
19.
Clin Pharmacokinet ; 55(6): 673-96, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26895020

RESUMEN

Intestinal metabolism can limit oral bioavailability of drugs and increase the risk of drug interactions. It is therefore important to be able to predict and quantify it in drug discovery and early development. In recent years, a plethora of models-in vivo, in situ and in vitro-have been discussed in the literature. The primary objective of this review is to summarize the current knowledge in the quantitative prediction of gut-wall metabolism. As well as discussing the successes of current models for intestinal metabolism, the challenges in the establishment of good preclinical models are highlighted, including species differences in the isoforms; regional abundances and activities of drug metabolizing enzymes; the interplay of enzyme-transporter proteins; and lack of knowledge on enzyme abundances and availability of empirical scaling factors. Due to its broad specificity and high abundance in the intestine, CYP3A is the enzyme that is frequently implicated in human gut metabolism and is therefore the major focus of this review. A strategy to assess the impact of gut wall metabolism on oral bioavailability during drug discovery and early development phases is presented. Current gaps in the mechanistic understanding and the prediction of gut metabolism are highlighted, with suggestions on how they can be overcome in the future.


Asunto(s)
Absorción Intestinal/fisiología , Modelos Biológicos , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Animales Modificados Genéticamente , Área Bajo la Curva , Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas , Enterocitos/enzimología , Interacciones Alimento-Droga , Glucuronosiltransferasa/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Mucosa Intestinal/metabolismo , Tasa de Depuración Metabólica , Modelos Animales , Farmacocinética , Sulfotransferasas/metabolismo
20.
Pharm Res ; 32(1): 74-90, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25033762

RESUMEN

PURPOSE: Beagle dogs are used to study oral pharmacokinetics and guide development of drug formulations for human use. Since mechanistic insight into species differences is needed to translate findings in this species to human, abundances of cytochrome P450 (CYP) and uridine diphosphate glucuronosyltransferase (UGT) drug metabolizing enzymes have been quantified in dog liver and intestine. METHODS: Abundances of enzymes were measured in Beagle dog intestine and liver using selected reaction monitoring mass spectrometry. RESULTS: Seven and two CYPs were present in the liver and intestine, respectively. CYP3A12 was the most abundant CYP in both tissues. Seven UGT enzymes were quantified in the liver and seven in the intestine although UGT1A11 and UGT1A9 were present only in the intestine and UGT1A7 and UGT2B31 were found only in the liver. UGT1A11 and UGT1A2 were the most abundant UGTs in the intestine and UGT2B31 was the most abundant UGT in the liver. Summed abundance of UGT enzymes was similar to the sum of CYP enzymes in the liver whereas intestinal UGTs were up to four times more abundant than CYPs. The estimated coefficients of variation of abundance estimates in the livers of 14 donors were separated into biological and technical components which ranged from 14 to 49% and 20 to 39%, respectively. CONCLUSIONS: Abundances of canine CYP enzymes in liver and intestine have been confirmed in a larger number of dogs and UGT abundances have been quantified for the first time. The biological variability in hepatic CYPs and UGTs has also been estimated.


Asunto(s)
Colon/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Glucuronosiltransferasa/metabolismo , Intestino Delgado/enzimología , Hígado/enzimología , Proteómica/métodos , Animales , Sistema Enzimático del Citocromo P-450/análisis , Perros , Femenino , Glucuronosiltransferasa/análisis , Humanos , Masculino , Espectrometría de Masas , Microsomas/enzimología , Modelos Biológicos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA