Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Sci Rep ; 14(1): 9028, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641673

RESUMEN

The primary objective of the present study was to identify a subset of radiomic features extracted from primary tumor imaged by computed tomography of early-stage non-small cell lung cancer patients, which remain unaffected by variations in segmentation quality and in computed tomography image acquisition protocol. The robustness of these features to segmentation variations was assessed by analyzing the correlation of feature values extracted from lesion volumes delineated by two annotators. The robustness to variations in acquisition protocol was evaluated by examining the correlation of features extracted from high-dose and low-dose computed tomography scans, both of which were acquired for each patient as part of the stereotactic body radiotherapy planning process. Among 106 radiomic features considered, 21 were identified as robust. An analysis including univariate and multivariate assessments was subsequently conducted to estimate the predictive performance of these robust features on the outcome of early-stage non-small cell lung cancer patients treated with stereotactic body radiation therapy. The univariate predictive analysis revealed that robust features demonstrated superior predictive potential compared to non-robust features. The multivariate analysis indicated that linear regression models built with robust features displayed greater generalization capabilities by outperforming other models in predicting the outcomes of an external validation dataset.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Radiocirugia , Carcinoma Pulmonar de Células Pequeñas , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Radiómica , Tomografía Computarizada por Rayos X , Radiocirugia/métodos
2.
Radiology ; 310(2): e231319, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38319168

RESUMEN

Filters are commonly used to enhance specific structures and patterns in images, such as vessels or peritumoral regions, to enable clinical insights beyond the visible image using radiomics. However, their lack of standardization restricts reproducibility and clinical translation of radiomics decision support tools. In this special report, teams of researchers who developed radiomics software participated in a three-phase study (September 2020 to December 2022) to establish a standardized set of filters. The first two phases focused on finding reference filtered images and reference feature values for commonly used convolutional filters: mean, Laplacian of Gaussian, Laws and Gabor kernels, separable and nonseparable wavelets (including decomposed forms), and Riesz transformations. In the first phase, 15 teams used digital phantoms to establish 33 reference filtered images of 36 filter configurations. In phase 2, 11 teams used a chest CT image to derive reference values for 323 of 396 features computed from filtered images using 22 filter and image processing configurations. Reference filtered images and feature values for Riesz transformations were not established. Reproducibility of standardized convolutional filters was validated on a public data set of multimodal imaging (CT, fluorodeoxyglucose PET, and T1-weighted MRI) in 51 patients with soft-tissue sarcoma. At validation, reproducibility of 486 features computed from filtered images using nine configurations × three imaging modalities was assessed using the lower bounds of 95% CIs of intraclass correlation coefficients. Out of 486 features, 458 were found to be reproducible across nine teams with lower bounds of 95% CIs of intraclass correlation coefficients greater than 0.75. In conclusion, eight filter types were standardized with reference filtered images and reference feature values for verifying and calibrating radiomics software packages. A web-based tool is available for compliance checking.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Radiómica , Humanos , Reproducibilidad de los Resultados , Biomarcadores , Imagen Multimodal
3.
J Nucl Med ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360055

RESUMEN

In lung cancer patients, radiotherapy is associated with a increased risk of local relapse (LR) when compared with surgery but with a preferable toxicity profile. The KEAP1/NFE2L2 mutational status (MutKEAP1/NFE2L2) is significantly correlated with LR in patients treated with radiotherapy but is rarely available. Prediction of MutKEAP1/NFE2L2 with noninvasive modalities could help to further personalize each therapeutic strategy. Methods: Based on a public cohort of 770 patients, model RNA (M-RNA) was first developed using continuous gene expression levels to predict MutKEAP1/NFE2L2, resulting in a binary output. The model PET/CT (M-PET/CT) was then built to predict M-RNA binary output using PET/CT-extracted radiomics features. M-PET/CT was validated on an external cohort of 151 patients treated with curative volumetric modulated arc radiotherapy. Each model was built, internally validated, and evaluated on a separate cohort using a multilayer perceptron network approach. Results: The M-RNA resulted in a C statistic of 0.82 in the testing cohort. With a training cohort of 101 patients, the retained M-PET/CT resulted in an area under the curve of 0.90 (P < 0.001). With a probability threshold of 20% applied to the testing cohort, M-PET/CT achieved a C statistic of 0.7. The same radiomics model was validated on the volumetric modulated arc radiotherapy cohort as patients were significantly stratified on the basis of their risk of LR with a hazard ratio of 2.61 (P = 0.02). Conclusion: Our approach enables the prediction of MutKEAP1/NFE2L2 using PET/CT-extracted radiomics features and efficiently classifies patients at risk of LR in an external cohort treated with radiotherapy.

4.
Eur J Nucl Med Mol Imaging ; 51(4): 1097-1108, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37987783

RESUMEN

PURPOSE: To develop machine learning models to predict regional and/or distant recurrence in patients with early-stage non-small cell lung cancer (ES-NSCLC) after stereotactic body radiation therapy (SBRT) using [18F]FDG PET/CT and CT radiomics combined with clinical and dosimetric parameters. METHODS: We retrospectively collected 464 patients (60% for training and 40% for testing) from University Hospital of Liège and 63 patients from University Hospital of Brest (external testing set) with ES-NSCLC treated with SBRT between 2010 and 2020 and who had undergone pretreatment [18F]FDG PET/CT and planning CT. Radiomic features were extracted using the PyRadiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Clinical, radiomic, and combined models were trained and tested using a neural network approach to predict regional and/or distant recurrence. RESULTS: In the training (n = 273) and testing sets (n = 191 and n = 63), the clinical model achieved moderate performances to predict regional and/or distant recurrence with C-statistics from 0.53 to 0.59 (95% CI, 0.41, 0.67). The radiomic (original_firstorder_Entropy, original_gldm_LowGrayLevelEmphasis and original_glcm_DifferenceAverage) model achieved higher predictive ability in the training set and kept the same performance in the testing sets, with C-statistics from 0.70 to 0.78 (95% CI, 0.63, 0.88) while the combined model performs moderately well with C-statistics from 0.50 to 0.62 (95% CI, 0.37, 0.69). CONCLUSION: Radiomic features extracted from pre-SBRT analog and digital [18F]FDG PET/CT outperform clinical parameters in the prediction of regional and/or distant recurrence and to discuss an adjuvant systemic treatment in ES-NSCLC. Prospective validation of our models should now be carried out.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Radiocirugia , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirugía , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fluorodesoxiglucosa F18 , Radiocirugia/métodos , Estudios Retrospectivos , Radiómica
5.
Sci Rep ; 13(1): 20014, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973797

RESUMEN

This study aims to develop a robust pipeline for classifying invasive ductal carcinomas and benign tumors in histopathological images, addressing variability within and between centers. We specifically tackle the challenge of detecting atypical data and variability between common clusters within the same database. Our feature engineering-based pipeline comprises a feature extraction step, followed by multiple harmonization techniques to rectify intra- and inter-center batch effects resulting from image acquisition variability and diverse patient clinical characteristics. These harmonization steps facilitate the construction of more robust and efficient models. We assess the proposed pipeline's performance on two public breast cancer databases, BreaKHIS and IDCDB, utilizing recall, precision, and accuracy metrics. Our pipeline outperforms recent models, achieving 90-95% accuracy in classifying benign and malignant tumors. We demonstrate the advantage of harmonization for classifying patches from different databases. Our top model scored 94.7% for IDCDB and 95.2% for BreaKHis, surpassing existing feature engineering-based models (92.1% for IDCDB and 87.7% for BreaKHIS) and attaining comparable performance to deep learning models. The proposed feature-engineering-based pipeline effectively classifies malignant and benign tumors while addressing variability within and between centers through the incorporation of various harmonization techniques. Our findings reveal that harmonizing variabilities between patches from different batches directly impacts the learning and testing performance of classification models. This pipeline has the potential to enhance breast cancer diagnosis and treatment and may be applicable to other diseases.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal , Humanos , Femenino , Neoplasias de la Mama/patología , Bases de Datos Factuales
6.
Med Image Anal ; 90: 102972, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37742374

RESUMEN

By focusing on metabolic and morphological tissue properties respectively, FluoroDeoxyGlucose (FDG)-Positron Emission Tomography (PET) and Computed Tomography (CT) modalities include complementary and synergistic information for cancerous lesion delineation and characterization (e.g. for outcome prediction), in addition to usual clinical variables. This is especially true in Head and Neck Cancer (HNC). The goal of the HEad and neCK TumOR segmentation and outcome prediction (HECKTOR) challenge was to develop and compare modern image analysis methods to best extract and leverage this information automatically. We present here the post-analysis of HECKTOR 2nd edition, at the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2021. The scope of the challenge was substantially expanded compared to the first edition, by providing a larger population (adding patients from a new clinical center) and proposing an additional task to the challengers, namely the prediction of Progression-Free Survival (PFS). To this end, the participants were given access to a training set of 224 cases from 5 different centers, each with a pre-treatment FDG-PET/CT scan and clinical variables. Their methods were subsequently evaluated on a held-out test set of 101 cases from two centers. For the segmentation task (Task 1), the ranking was based on a Borda counting of their ranks according to two metrics: mean Dice Similarity Coefficient (DSC) and median Hausdorff Distance at 95th percentile (HD95). For the PFS prediction task, challengers could use the tumor contours provided by experts (Task 3) or rely on their own (Task 2). The ranking was obtained according to the Concordance index (C-index) calculated on the predicted risk scores. A total of 103 teams registered for the challenge, for a total of 448 submissions and 29 papers. The best method in the segmentation task obtained an average DSC of 0.759, and the best predictions of PFS obtained a C-index of 0.717 (without relying on the provided contours) and 0.698 (using the expert contours). An interesting finding was that best PFS predictions were reached by relying on DL approaches (with or without explicit tumor segmentation, 4 out of the 5 best ranked) compared to standard radiomics methods using handcrafted features extracted from delineated tumors, and by exploiting alternative tumor contours (automated and/or larger volumes encompassing surrounding tissues) rather than relying on the expert contours. This second edition of the challenge confirmed the promising performance of fully automated primary tumor delineation in PET/CT images of HNC patients, although there is still a margin for improvement in some difficult cases. For the first time, the prediction of outcome was also addressed and the best methods reached relatively good performance (C-index above 0.7). Both results constitute another step forward toward large-scale outcome prediction studies in HNC.

7.
Head Neck Tumor Chall (2022) ; 13626: 1-30, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37195050

RESUMEN

This paper presents an overview of the third edition of the HEad and neCK TumOR segmentation and outcome prediction (HECKTOR) challenge, organized as a satellite event of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2022. The challenge comprises two tasks related to the automatic analysis of FDG-PET/CT images for patients with Head and Neck cancer (H&N), focusing on the oropharynx region. Task 1 is the fully automatic segmentation of H&N primary Gross Tumor Volume (GTVp) and metastatic lymph nodes (GTVn) from FDG-PET/CT images. Task 2 is the fully automatic prediction of Recurrence-Free Survival (RFS) from the same FDG-PET/CT and clinical data. The data were collected from nine centers for a total of 883 cases consisting of FDG-PET/CT images and clinical information, split into 524 training and 359 test cases. The best methods obtained an aggregated Dice Similarity Coefficient (DSCagg) of 0.788 in Task 1, and a Concordance index (C-index) of 0.682 in Task 2.

9.
Eur J Nucl Med Mol Imaging ; 50(8): 2514-2528, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36892667

RESUMEN

PURPOSE: To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using 18F-FDG PET/CT and MRI radiomics combined with clinical parameters. METHODS: We retrospectively collected 178 patients (60% for training and 40% for testing) in 2 centers and 61 patients corresponding to 2 further external testing cohorts with LACC between 2010 to 2022 and who had undergone pretreatment analog or digital 18F-FDG PET/CT, pelvic MRI and surgical PALN staging. Only primary tumor volumes were delineated. Radiomics features were extracted using the Radiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Different prediction models were trained using a neural network approach with either clinical, radiomics or combined models. They were then evaluated on the testing and external validation sets and compared. RESULTS: In the training set (n = 102), the clinical model achieved a good prediction of the risk of PALN involvement with a C-statistic of 0.80 (95% CI 0.71, 0.87). However, it performed in the testing (n = 76) and external testing sets (n = 30 and n = 31) with C-statistics of only 0.57 to 0.67 (95% CI 0.36, 0.83). The ComBat-radiomic (GLDZM_HISDE_PET_FBN64 and Shape_maxDiameter2D3_PET_FBW0.25) and ComBat-combined (FIGO 2018 and same radiomics features) models achieved very high predictive ability in the training set and both models kept the same performance in the testing sets, with C-statistics from 0.88 to 0.96 (95% CI 0.76, 1.00) and 0.85 to 0.92 (95% CI 0.75, 0.99), respectively. CONCLUSIONS: Radiomic features extracted from pre-CRT analog and digital 18F-FDG PET/CT outperform clinical parameters in the decision to perform a para-aortic node staging or an extended field irradiation to PALN. Prospective validation of our models should now be carried out.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias del Cuello Uterino , Femenino , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18 , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/terapia , Neoplasias del Cuello Uterino/patología , Estudios Retrospectivos , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Imagen por Resonancia Magnética
10.
Eur J Nucl Med Mol Imaging ; 50(6): 1720-1734, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36690882

RESUMEN

PURPOSE: This study aimed to investigate the impact of several ComBat harmonization strategies, intra-tumoral sub-volume characterization, and automatic segmentations for progression-free survival (PFS) prediction through radiomics modeling for patients with head and neck cancer (HNC) in PET/CT images. METHODS: The HECKTOR MICCAI 2021 challenge set containing PET/CT images and clinical data of 325 oropharynx HNC patients was exploited. A total of 346 IBSI-compliant radiomic features were extracted for each patient's primary tumor volume defined by the reference manual contours. Modeling relied on least absolute shrinkage Cox regression (Lasso-Cox) for feature selection (FS) and Cox proportional-hazards (CoxPH) models were built to predict PFS. Within this methodological framework, 8 different strategies for ComBat harmonization were compared, including before or after FS, in feature groups separately or all features directly, and with center or clustering-determined labels. Features extracted from tumor sub-volume clustering were also investigated for their prognostic additional value. Finally, 3 automatic segmentations (2 threshold-based and a 3D U-Net) were also compared. All results were evaluated with the concordance index (C-index). RESULTS: Radiomics features without harmonization, combined with clinical factors, led to models with C-index values of 0.69 in the testing set. The best version of ComBat harmonization, i.e., after FS, for feature groups separately and relying on clustering-determined labels, achieved a C-index of 0.71. The use of features extracted from tumor sub-volumes further improved the C-index to 0.72. Models that relied on the automatic segmentations yielded close but slightly lower prognostic performance (0.67-0.70) compared to reference contours. CONCLUSION: A standard radiomics pipeline allowed for prediction of PFS in a multicenter HNC cohort. Applying a specific strategy of ComBat harmonization improved the performance. The extraction of intra-tumoral sub-volume features and automatic segmentation could contribute to the improvement and automation of prognosis modeling, respectively.


Asunto(s)
Neoplasias de Cabeza y Cuello , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Pronóstico , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Modelos de Riesgos Proporcionales
11.
J Nucl Med ; 64(2): 188-196, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36522184

RESUMEN

Trustworthiness is a core tenet of medicine. The patient-physician relationship is evolving from a dyad to a broader ecosystem of health care. With the emergence of artificial intelligence (AI) in medicine, the elements of trust must be revisited. We envision a road map for the establishment of trustworthy AI ecosystems in nuclear medicine. In this report, AI is contextualized in the history of technologic revolutions. Opportunities for AI applications in nuclear medicine related to diagnosis, therapy, and workflow efficiency, as well as emerging challenges and critical responsibilities, are discussed. Establishing and maintaining leadership in AI require a concerted effort to promote the rational and safe deployment of this innovative technology by engaging patients, nuclear medicine physicians, scientists, technologists, and referring providers, among other stakeholders, while protecting our patients and society. This strategic plan was prepared by the AI task force of the Society of Nuclear Medicine and Molecular Imaging.


Asunto(s)
Inteligencia Artificial , Medicina Nuclear , Humanos , Ecosistema , Cintigrafía , Imagen Molecular
12.
Bull Cancer ; 109(10): 1088-1093, 2022 Oct.
Artículo en Francés | MEDLINE | ID: mdl-35908990

RESUMEN

The fourteenth edition of the workshop covered the latest advances in internal and external radiotherapy obtained through a better understanding of the adaptive capacity of the tumor and its microenvironment, from different disciplinary angles, chemistry, biology, physics, and medicine, paving the way for numerous technological innovations. The biological aspects and the contribution of imaging in monitoring and understanding the adaptation of tumors to radiotherapy were presented, before focusing on innovative radiotherapy strategies and machine learning and data-driven techniques. Finally, the challenges were explored in the radiobiology of targeted radionuclide therapy as well as data science and machine learning in radiomics.


Asunto(s)
Neoplasias , Oncología por Radiación , Diagnóstico por Imagen , Ecosistema , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Radioisótopos , Microambiente Tumoral
13.
J Nucl Med ; 63(9): 1288-1299, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35618476

RESUMEN

An important need exists for strategies to perform rigorous objective clinical-task-based evaluation of artificial intelligence (AI) algorithms for nuclear medicine. To address this need, we propose a 4-class framework to evaluate AI algorithms for promise, technical task-specific efficacy, clinical decision making, and postdeployment efficacy. We provide best practices to evaluate AI algorithms for each of these classes. Each class of evaluation yields a claim that provides a descriptive performance of the AI algorithm. Key best practices are tabulated as the RELAINCE (Recommendations for EvaLuation of AI for NuClear medicinE) guidelines. The report was prepared by the Society of Nuclear Medicine and Molecular Imaging AI Task Force Evaluation team, which consisted of nuclear-medicine physicians, physicists, computational imaging scientists, and representatives from industry and regulatory agencies.


Asunto(s)
Inteligencia Artificial , Medicina Nuclear , Algoritmos , Cintigrafía
14.
Cancers (Basel) ; 14(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35205826

RESUMEN

Objective: Our objective was to develop a radiomics model based on magnetic resonance imaging (MRI) and contrast-enhanced computed tomography (CE-CT) to predict pathological complete response (pCR) to neoadjuvant treatment in locally advanced rectal cancer (LARC). Material: All patients treated for a LARC with neoadjuvant CRT and subsequent surgery in two separate institutions between 2012 and 2019 were considered. Both pre-CRT pelvic MRI and CE-CT were mandatory for inclusion. The tumor was manually segmented on the T2-weighted and diffusion axial MRI sequences and on CE-CT. In total, 88 radiomic parameters were extracted from each sequence using the Miras© software, with a total of 822 features by patient. The cohort was split into training (Institution 1) and testing (Institution 2) sets. The ComBat and Synthetic Minority Over-sampling Technique (SMOTE) approaches were used to account for inter-institution heterogeneity and imbalanced data, respectively. We selected the most predictive characteristics using Spearman's rank correlation and the Area Under the ROC Curve (AUC). Five pCR prediction models (clinical, radiomics before and after ComBat, and combined before and after ComBat) were then developed on the training set with a neural network approach and a bootstrap internal validation (n = 1000 replications). A cut-off maximizing the model's performance was defined on the training set. Each model was then evaluated on the testing set using sensitivity, specificity, balanced accuracy (Bacc) with the predefined cut-off. Results: Out of the 124 included patients, 14 had pCR (11.3%). After ComBat harmonization, the radiomic and the combined models obtained a Bacc of 68.2% and 85.5%, respectively, while the clinical model and the pre-ComBat combined achieved respective Baccs of 60.0% and 75.5%. Conclusions: After correction of inter-site variability and imbalanced data, addition of radiomic features enhances the prediction of pCR after neoadjuvant CRT in LARC.

15.
Med Image Anal ; 77: 102336, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35016077

RESUMEN

This paper relates the post-analysis of the first edition of the HEad and neCK TumOR (HECKTOR) challenge. This challenge was held as a satellite event of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2020, and was the first of its kind focusing on lesion segmentation in combined FDG-PET and CT image modalities. The challenge's task is the automatic segmentation of the Gross Tumor Volume (GTV) of Head and Neck (H&N) oropharyngeal primary tumors in FDG-PET/CT images. To this end, the participants were given a training set of 201 cases from four different centers and their methods were tested on a held-out set of 53 cases from a fifth center. The methods were ranked according to the Dice Score Coefficient (DSC) averaged across all test cases. An additional inter-observer agreement study was organized to assess the difficulty of the task from a human perspective. 64 teams registered to the challenge, among which 10 provided a paper detailing their approach. The best method obtained an average DSC of 0.7591, showing a large improvement over our proposed baseline method and the inter-observer agreement, associated with DSCs of 0.6610 and 0.61, respectively. The automatic methods proved to successfully leverage the wealth of metabolic and structural properties of combined PET and CT modalities, significantly outperforming human inter-observer agreement level, semi-automatic thresholding based on PET images as well as other single modality-based methods. This promising performance is one step forward towards large-scale radiomics studies in H&N cancer, obviating the need for error-prone and time-consuming manual delineation of GTVs.


Asunto(s)
Neoplasias de Cabeza y Cuello , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fluorodesoxiglucosa F18 , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos , Carga Tumoral
16.
Eur J Nucl Med Mol Imaging ; 49(2): 527-538, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34255130

RESUMEN

PURPOSE: To evaluate the performance of combined PET and multiparametric MRI (mpMRI) radiomics for the group-wise prediction of postsurgical Gleason scores (psGSs) in primary prostate cancer (PCa) patients. METHODS: Patients with PCa, who underwent [68 Ga]Ga-PSMA-11 PET/MRI followed by radical prostatectomy, were included in this retrospective analysis (n = 101). Patients were grouped by psGS in three categories: ISUP grades 1-3, ISUP grade 4, and ISUP grade 5. mpMRI images included T1-weighted, T2-weighted, and apparent diffusion coefficient (ADC) map. Whole-prostate segmentations were performed on each modality, and image biomarker standardization initiative (IBSI)-compliant radiomic features were extracted. Nine support vector machine (SVM) models were trained: four single-modality radiomic models (PET, T1w, T2w, ADC); three PET + MRI double-modality models (PET + T1w, PET + T2w, PET + ADC), and two baseline models (one with patient data, one image-based) for comparison. A sixfold stratified cross-validation was performed, and balanced accuracies (bAcc) of the predictions of the best-performing models were reported and compared through Student's t-tests. The predictions of the best-performing model were compared against biopsy GS (bGS). RESULTS: All radiomic models outperformed the baseline models. The best-performing (mean ± stdv [%]) single-modality model was the ADC model (76 ± 6%), although not significantly better (p > 0.05) than other single-modality models (T1w: 72 ± 3%, T2w: 73 ± 2%; PET: 75 ± 5%). The overall best-performing model combined PET + ADC radiomics (82 ± 5%). It significantly outperformed most other double-modality (PET + T1w: 74 ± 5%, p = 0.026; PET + T2w: 71 ± 4%, p = 0.003) and single-modality models (PET: p = 0.042; T1w: p = 0.002; T2w: p = 0.003), except the ADC-only model (p = 0.138). In this initial cohort, the PET + ADC model outperformed bGS overall (82.5% vs 72.4%) in the prediction of psGS. CONCLUSION: All single- and double-modality models outperformed the baseline models, showing their potential in the prediction of GS, even with an unbalanced cohort. The best-performing model included PET + ADC radiomics, suggesting a complementary value of PSMA-PET and ADC radiomics.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Próstata , Humanos , Masculino , Clasificación del Tumor , Prostatectomía , Neoplasias de la Próstata/patología , Estudios Retrospectivos
17.
Eur Radiol ; 32(1): 405-414, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34170367

RESUMEN

OBJECTIVES: To assess the value of contrast-enhanced (CE) diagnostic CT scans characterized through radiomics as predictors of recurrence for patients with stage II and III colorectal cancer in a two-center context. MATERIALS AND METHODS: This study included 193 patients diagnosed with stage II and III colorectal adenocarcinoma from 1 July 2008 to 15 March 2017 in two different French University Hospitals. To compensate for the variability in two-center data, a statistical harmonization method Bootstrapped ComBat (B-ComBat) was used. Models predicting disease-free survival (DFS) were built using 3 different machine learning (ML): (1) multivariate regression (MR) with 10-fold cross-validation after feature selection based on least absolute shrinkage and selection operator (LASSO), (2) random forest (RF), and (3) support vector machine (SVM), both with embedded feature selection. RESULTS: The performance for both balanced and 95% sensitivity models was systematically higher after our proposed B-ComBat harmonization compared to the use of the original untransformed data. The most clinically relevant performance was achieved by the multivariate regression model combining a clinical variable (postoperative chemotherapy) with two radiomics shape descriptors (compactness and least axis length) with a BAcc of 0.78 and an MCC of 0.6 associated with a required sensitivity of 95%. The resulting stratification in terms of DFS was significant (p = 0.00021), especially compared to the use of unharmonized original data (p = 0.17). CONCLUSIONS: Radiomics models derived from contrast-enhanced CT could be trained and validated in a two-center cohort with a good predictive performance of recurrence in stage II et III colorectal cancer patients. KEY POINTS: • Adjuvant therapy decision in colorectal cancer can be a challenge in medical oncology. • Radiomics models, derived from diagnostic CT, trained and validated in a two-center cohort, could predict recurrence in stage II and III colorectal cancer patients. • Identifying patients with a low risk of recurrence, these models could facilitate treatment optimization and avoid unnecessary treatment.


Asunto(s)
Neoplasias Colorrectales , Tomografía Computarizada por Rayos X , Neoplasias Colorrectales/diagnóstico por imagen , Supervivencia sin Enfermedad , Humanos , Aprendizaje Automático , Estudios Retrospectivos , Máquina de Vectores de Soporte
18.
Cancers (Basel) ; 13(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830828

RESUMEN

Significant advances in lymph node involvement (LNI) risk modeling in prostate cancer (PCa) have been achieved with the addition of visual interpretation of magnetic resonance imaging (MRI) data, but it is likely that quantitative analysis could further improve prediction models. In this study, we aimed to develop and internally validate a novel LNI risk prediction model based on radiomic features extracted from preoperative multimodal MRI. All patients who underwent a preoperative MRI and radical prostatectomy with extensive lymph node dissection were retrospectively included in a single institution. Patients were randomly divided into the training (60%) and testing (40%) sets. Radiomic features were extracted from the index tumor volumes, delineated on the apparent diffusion coefficient corrected map and the T2 sequences. A ComBat harmonization method was applied to account for inter-site heterogeneity. A prediction model was trained using a neural network approach (Multilayer Perceptron Network, SPSS v24.0©) combining clinical, radiomic and all features. It was then evaluated on the testing set and compared to the current available models using the Receiver Operative Characteristics and the C-Index. Two hundred and eighty patients were included, with a median age of 65.2 y (45.3-79.6), a mean PSA level of 9.5 ng/mL (1.04-63.0) and 79.6% of ISUP ≥ 2 tumors. LNI occurred in 51 patients (18.2%), with a median number of extracted nodes of 15 (10-19). In the testing set, with their respective cutoffs applied, the Partin, Roach, Yale, MSKCC, Briganti 2012 and 2017 models resulted in a C-Index of 0.71, 0.66, 0.55, 0.67, 0.65 and 0.73, respectively, while our proposed combined model resulted in a C-Index of 0.89 in the testing set. Radiomic features extracted from the preoperative MRI scans and combined with clinical features through a neural network seem to provide added predictive performance compared to state of the art models regarding LNI risk prediction in PCa.

19.
Front Oncol ; 11: 726865, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733779

RESUMEN

BACKGROUND: The aim of this work was to investigate the ability of building prognostic models in non-small cell lung cancer (NSCLC) using radiomic features from positron emission tomography and computed tomography with 2-deoxy-2-[fluorine-18]fluoro-d-glucose (18F-FDG PET/CT) images based on a "rough" volume of interest (VOI) containing the tumor instead of its accurate delineation, which is a significant time-consuming bottleneck of radiomics analyses. METHODS: A cohort of 138 patients with stage II-III NSCLC treated with radiochemotherapy recruited retrospectively (n = 87) and prospectively (n = 51) was used. Two approaches were compared: firstly, the radiomic features were extracted from the delineated primary tumor volumes in both PET (using the automated fuzzy locally adaptive Bayesian, FLAB) and CT (using a semi-automated approach with 3D Slicer™) components. Both delineations were carried out within previously manually defined "rough" VOIs containing the tumor and the surrounding tissues, which were exploited for the second approach: the same features were extracted from this alternative VOI. Both sets for features were then combined with the clinical variables and processed through the same machine learning (ML) pipelines using the retrospectively recruited patients as the training set and the prospectively recruited patients as the testing set. Logistic regression (LR), random forest (RF), and support vector machine (SVM), as well as their consensus through averaging the output probabilities, were considered for feature selection and modeling for overall survival (OS) prediction as a binary classification (either median OS or 6 months OS). The resulting models were compared in terms of balanced accuracy, sensitivity, and specificity. RESULTS: Overall, better performance was achieved using the features from delineated tumor volumes. This was observed consistently across ML algorithms and for the two clinical endpoints. However, the loss of performance was not significant, especially when a consensus of the three ML algorithms was considered (0.89 vs. 0.88 and 0.78 vs. 0.77). CONCLUSION: Our findings suggest that it is feasible to achieve similar levels of prognostic accuracy in radiomics-based modeling by relying on a faster and easier VOI definition, skipping a time-consuming tumor delineation step, thus facilitating automation of the whole radiomics workflow. The associated cost is a loss of performance in the resulting models, although this loss can be greatly mitigated when a consensus of several models is relied upon.

20.
PLoS One ; 16(7): e0253653, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34197503

RESUMEN

PURPOSE: To facilitate the demonstration of the prognostic value of radiomics, multicenter radiomics studies are needed. Pooling radiomic features of such data in a statistical analysis is however challenging, as they are sensitive to the variability in scanner models, acquisition protocols and reconstruction settings, which is often unavoidable in a multicentre retrospective analysis. A statistical harmonization strategy called ComBat was utilized in radiomics studies to deal with the "center-effect". The goal of the present work was to integrate a transfer learning (TL) technique within ComBat-and recently developed alternate versions of ComBat with improved flexibility (M-ComBat) and robustness (B-ComBat)-to allow the use of a previously determined harmonization transform to the radiomic feature values of new patients from an already known center. MATERIAL AND METHODS: The proposed TL approach were incorporated in the four versions of ComBat (standard, B, M, and B-M ComBat). The proposed approach was evaluated using a dataset of 189 locally advanced cervical cancer patients from 3 centers, with magnetic resonance imaging (MRI) and positron emission tomography (PET) images, with the clinical endpoint of predicting local failure. The impact performance of the TL approach was evaluated by comparing the harmonization achieved using only parts of the data to the reference (harmonization achieved using all the available data). It was performed through three different machine learning pipelines. RESULTS: The proposed TL technique was successful in harmonizing features of new patients from a known center in all versions of ComBat, leading to predictive models reaching similar performance as the ones developed using the features harmonized with all the data available. CONCLUSION: The proposed TL approach enables applying a previously determined ComBat transform to new, previously unseen data.


Asunto(s)
Cuello del Útero/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/normas , Aprendizaje Automático/normas , Neoplasias del Cuello Uterino/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Cuello del Útero/patología , Quimioradioterapia/métodos , Conjuntos de Datos como Asunto , Sistemas de Apoyo a Decisiones Clínicas/normas , Sistemas de Apoyo a Decisiones Clínicas/estadística & datos numéricos , Femenino , Estudios de Seguimiento , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Aprendizaje Automático/estadística & datos numéricos , Imagen por Resonancia Magnética/normas , Imagen por Resonancia Magnética/estadística & datos numéricos , Persona de Mediana Edad , Tomografía de Emisión de Positrones/normas , Tomografía de Emisión de Positrones/estadística & datos numéricos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/normas , Tomografía Computarizada por Rayos X/estadística & datos numéricos , Resultado del Tratamiento , Neoplasias del Cuello Uterino/terapia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...