Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 22(22): 12688-12696, 2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32458937

RESUMEN

Porphyrin molecules are particularly interesting candidates for spintronic applications due to their bonding flexibility, which allows to modify their properties substantially by the addition or transformation of ligands. Here, we investigate the electronic and magnetic properties of cobalt octaethylporphyrin (CoOEP), deposited on copper substrates with two distinct crystallographic surface orientations, Cu(100) and Cu(111), with X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). A significant magnetic moment is present in the Co ions of the molecules deposited on Cu(100), but it is completely quenched on Cu(111). Heating the molecules on both substrates to 500 K induces a ring-closure reaction with cobalt tetrabenzoporphyrin (CoTBP) as reaction product. In these molecules, the magnetic moment is quenched on both surfaces. Our XMCD and XAS measurements suggest that the filling of the dz2 orbital leads to a non-integer valence state and causes the quench of the spin moments on all samples except CoOEP/Cu(100), where the molecular conformation induces variations to the ligand field that lift the quench. We further employ density functional theory calculations, supplemented with on-site Coulomb correlations (DFT+U), to study the adsorption of these spin-bearing molecules on the Cu substrates. Our calculations show that charge transfer from the Cu substrates as well as charge redistribution within the Co 3d orbitals lead to the filling of the Co minority spin dz2 orbital, causing a 'turning off' of the exchange splitting and quenching of the spin moment at the Co magnetic centers. Our investigations suggest that, by this mechanism, molecule-substrate interactions can be used to control the quenching of the magnetic moments of the adsorbed molecules.

2.
ACS Nano ; 12(4): 3172-3177, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29489330

RESUMEN

The oxidation and spin state of a metal-organic molecule determine its chemical reactivity and magnetic properties. Here, we demonstrate the reversible control of the oxidation and spin state in a single Fe porphyrin molecule in the force field of the tip of a scanning tunneling microscope. Within the regimes of half-integer and integer spin state, we can further track the evolution of the magnetocrystalline anisotropy. Our experimental results are corroborated by density functional theory and wave function theory. This combined analysis allows us to draw a complete picture of the molecular states over a large range of intramolecular deformations.

3.
Nat Commun ; 8(1): 2016, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29222411

RESUMEN

The competition of the free-spin state of a paramagnetic impurity on a superconductor with its screened counterpart is characterized by the energy scale of Kondo screening compared to the superconducting pairing energy Δ. When the experimental temperature suppresses Kondo screening, but preserves superconductivity, i.e., when Δ/k B > T > T K (k B is Boltzmann's constant and T K the Kondo temperature), this description fails. Here, we explore this temperature range in a set of manganese phthalocyanine molecules decorated with ammonia on Pb(111). We show that these molecules suffice the required energy conditions by exhibiting weak-coupling Kondo resonances. We correlate the Yu-Shiba-Rusinov bound states energy inside the superconducting gap with the intensity of the Kondo resonance. The observed correlation follows the expectations for a classical spin on a superconductor. This finding is important in view of many theoretical predictions using a classical spin model, in particular for the description of Majorana bound states in magnetic nanostructures on superconducting substrates.

4.
Nat Commun ; 6: 8988, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26603561

RESUMEN

The exchange coupling between magnetic adsorbates and a superconducting substrate leads to Shiba states inside the superconducting energy gap and a Kondo resonance outside the gap. The exchange coupling strength determines whether the quantum many-body ground state is a Kondo singlet or a singlet of the paired superconducting quasiparticles. Here we use scanning tunnelling spectroscopy to identify the different quantum ground states of manganese phthalocyanine on Pb(111). We observe Shiba states, which are split into triplets by magnetocrystalline anisotropy. Their characteristic spectral weight yields an unambiguous proof of the nature of the quantum ground state. Our results provide experimental insights into the phase diagram of a magnetic impurity on a superconducting host and shine light on the effects induced by magnetic anisotropy on many-body interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...