Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 4336, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38383699

RESUMEN

Materials informatics in the development of organic light-emitting diode (OLED) related materials have been performed and exhibited the effectiveness for finding promising compounds with a desired property. However, the molecular structure optimization of the promising compounds through the conventional approach, namely the fine-tuning of molecules, still involves a significant amount of trial and error. This is because it is challenging to endow a single molecule with all the properties required for practical applications. The present work focused on fine-tuning triazine-based electron-transport materials using machine learning (ML) techniques. The prediction models based on localized datasets containing only triazine derivatives showed high prediction accuracy. The descriptors from density functional theory calculations enhanced the prediction of the glass transition temperature. The proposed multistep virtual screening approach extracted the promising triazine derivatives with the coexistence of higher electron mobility and glass transition temperature. Nine selected triazine compounds from 3,670,000 of the initial search space were synthesized and used as the electron transport layer for practical OLED devices. Their observed properties matched the predicted properties, and they enhanced the current efficiency and lifetime of the device. This paper provides a successful model for the ML assisted fine-tuning that effectively accelerates the development of practical materials.

2.
Small Methods ; : e2301318, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38133483

RESUMEN

3D cell cultures are indispensable in recapitulating in vivo environments. Among the many 3D culture methods, culturing adherent cells on hydrogel beads to form spheroid-like structures is a powerful strategy for maintaining high cell viability and functions in the adherent states. However, high-throughput, scalable technologies for 3D imaging of individual cells cultured on the hydrogel scaffolds are lacking. This study reports the development of a high throughput, scalable 3D imaging flow cytometry platform for analyzing spheroid models. This platform is realized by integrating a single objective fluorescence light-sheet microscopy with a microfluidic device that combines hydrodynamic and acoustofluidic focusing techniques. This integration enabled unprecedentedly high-throughput and scalable optofluidic 3D imaging, processing 1310 spheroids consisting of 28 117 cells min-1 . The large dataset obtained enables precise quantification and comparison of the nuclear morphology of adhering and suspended cells, revealing that the adhering cells have smaller nuclei with less rounded surfaces. This platform's high throughput, robustness, and precision for analyzing the morphology of subcellular structures in 3D culture models hold promising potential for various biomedical analyses, including image-based phenotypic screening of drugs with spheroids or organoids.

3.
Anal Chem ; 94(32): 11209-11215, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35797226

RESUMEN

Extracellular vesicles (EVs) are essential intercellular communication tools, but the regulatory mechanisms governing heterogeneous EV secretion are still unclear due to the lack of methods for precise analysis. Monitoring the dynamics of secretion from individually isolated cells is crucial because in bulk analysis, secretion activity can be perturbed by cell-cell interactions, and a cell population rarely performs secretion in a magnitude- or duration-synchronized manner. Although various microfluidic techniques have been adopted to evaluate the abundance of single-cell-derived EVs, none can track their secretion dynamics continually for extended periods. Here, we have developed a droplet array-based method that allowed us to optically quantify the EV secretion dynamics of >300 single cells every 2 h for 36 h, which covers the cell doubling time of many cell types. The experimental results clearly show the highly heterogeneous nature of single-cell EV secretion and suggest that cell division facilitates EV secretion, showing the usefulness of this platform for discovering EV regulation machinery.


Asunto(s)
Vesículas Extracelulares , Comunicación Celular , Vesículas Extracelulares/metabolismo
4.
Nat Biomed Eng ; 6(4): 476-494, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35314801

RESUMEN

The cellular composition of barrier epithelia is essential to organismal homoeostasis. In particular, within the small intestine, adult stem cells establish tissue cellularity, and may provide a means to control the abundance and quality of specialized epithelial cells. Yet, methods for the identification of biological targets regulating epithelial composition and function, and of small molecules modulating them, are lacking. Here we show that druggable biological targets and small-molecule regulators of intestinal stem cell differentiation can be identified via multiplexed phenotypic screening using thousands of miniaturized organoid models of intestinal stem cell differentiation into Paneth cells, and validated via longitudinal single-cell RNA-sequencing. We found that inhibitors of the nuclear exporter Exportin 1 modulate the fate of intestinal stem cells, independently of known differentiation cues, significantly increasing the abundance of Paneth cells in the organoids and in wild-type mice. Physiological organoid models of the differentiation of intestinal stem cells could find broader utility for the screening of biological targets and small molecules that can modulate the composition and function of other barrier epithelia.


Asunto(s)
Organoides , Células de Paneth , Animales , Diferenciación Celular , Intestinos , Ratones , Células de Paneth/fisiología , Células Madre
5.
Antioxid Redox Signal ; 37(10-12): 631-646, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35018792

RESUMEN

Aims: The circadian clock oscillates in a cell-autonomous manner with a period of ∼24 h, and the phase is regulated by various time cues such as light and temperature through multiple clock input pathways. We previously found that osmotic and oxidative stress strongly affected the circadian period and phase of cellular rhythms, and triple knockout of apoptosis signal-regulating kinase (ASK) family members, Ask1, Ask2, and Ask3, abolished the phase shift (clock resetting) induced by hyperosmotic pulse treatment. We aimed at exploring a key molecule(s) and signaling events in the clock input pathway dependent on ASK kinases. Results: The phase shift of the cellular clock induced by the hyperosmotic pulse treatment was significantly reduced by combined deficiencies of the clock(-related) genes, Dec1, Dec2, and E4 promoter-binding protein 4 (also known as Nfil3) (E4bp4). In addition, liquid chromatography mass/mass spectrometry (LC-MS/MS)-based proteomic analysis identified hyperosmotic pulse-induced phosphorylation of circadian locomotor output cycles caput (CLOCK) Ser845 in an AKT-dependent manner. We found that AKT kinase was phosphorylated at Ser473 (i.e., activated) in response to the hyperosmotic pulse experiments. Inhibition of mechanistic target of rapamycin (mTOR) kinase by Torin 1 treatment completely abolished the AKT activation, suppressed the phosphorylation of CLOCK Ser845, and blocked the clock resetting induced by the hyperosmotic pulse treatment. Innovation and Conclusions: We conclude that mTOR-AKT signaling is indispensable for the CLOCK Ser845 phosphorylation, which correlates with the clock resetting induced by the hyperosmotic pulse treatment. Immediate early induction of the clock(-related) genes and CLOCK carboxyl-terminal (C-terminal) region containing Ser845 also play important roles in the clock input pathway through redox-sensitive ASK kinases. Antioxid. Redox Signal. 37, 631-646.


Asunto(s)
Ritmo Circadiano , Proteínas Proto-Oncogénicas c-akt , Cromatografía Liquida , Ritmo Circadiano/genética , Presión Osmótica , Proteómica , Sirolimus , Serina-Treonina Quinasas TOR , Espectrometría de Masas en Tándem , Factores de Transcripción/metabolismo
6.
Sci Rep ; 11(1): 22009, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34759307

RESUMEN

Recent studies have shown that adipose tissue is an immunological organ. While inflammation in energy-storing white adipose tissues has been the focus of intense research, the regulatory mechanisms of inflammation in heat-producing brown adipose tissues remain largely unknown. We previously identified apoptosis signal-regulating kinase 1 (ASK1) as a critical regulator of brown adipocyte maturation; the PKA-ASK1-p38 axis facilitates uncoupling protein 1 (UCP1) induction cell-autonomously. Here, we show that ASK1 suppresses an innate immune pathway and contributes to maintenance of brown adipocytes. We report a novel chemical pull-down method for endogenous kinases using analog sensitive kinase allele (ASKA) technology and identify an ASK1 interactor in brown adipocytes, receptor-interacting serine/threonine-protein kinase 2 (RIPK2). ASK1 disrupts the RIPK2 signaling complex and inhibits the NOD-RIPK2 pathway to downregulate the production of inflammatory cytokines. As a potential biological significance, an in vitro model for intercellular regulation suggests that ASK1 facilitates the expression of UCP1 through the suppression of inflammatory cytokine production. In parallel to our previous report on the PKA-ASK1-p38 axis, our work raises the possibility of an auxiliary role of ASK1 in brown adipocyte maintenance through neutralizing the thermogenesis-suppressive effect of the NOD-RIPK2 pathway.


Asunto(s)
Adipocitos Marrones/metabolismo , MAP Quinasa Quinasa Quinasa 5/farmacología , Proteínas Adaptadoras de Señalización NOD/efectos de los fármacos , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/efectos de los fármacos , Adipocitos Marrones/efectos de los fármacos , Adipocitos Blancos/metabolismo , Animales , Citocinas/análisis , Células HEK293 , Humanos , Inflamación/tratamiento farmacológico , Ratones , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína Desacopladora 1/efectos de los fármacos
7.
EMBO Rep ; 22(5): e51532, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33822458

RESUMEN

Ferroptosis has recently attracted much interest because of its relevance to human diseases such as cancer and ischemia-reperfusion injury. We have reported that prolonged severe cold stress induces lipid peroxidation-dependent ferroptosis, but the upstream mechanism remains unknown. Here, using genome-wide CRISPR screening, we found that a mitochondrial Ca2+ uptake regulator, mitochondrial calcium uptake 1 (MICU1), is required for generating lipid peroxide and subsequent ferroptosis under cold stress. Furthermore, the gatekeeping activity of MICU1 through mitochondrial calcium uniporter (MCU) is suggested to be indispensable for cold stress-induced ferroptosis. MICU1 is required for mitochondrial Ca2+ increase, hyperpolarization of the mitochondrial membrane potential (MMP), and subsequent lipid peroxidation under cold stress. Collectively, these findings suggest that the MICU1-dependent mitochondrial Ca2+ homeostasis-MMP hyperpolarization axis is involved in cold stress-induced lipid peroxidation and ferroptosis.


Asunto(s)
Proteínas de Transporte de Catión , Ferroptosis , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Respuesta al Choque por Frío , Humanos , Potencial de la Membrana Mitocondrial , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
8.
PLoS One ; 15(10): e0232645, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33108364

RESUMEN

Boosting energy expenditure by harnessing the activity of brown adipocytes is a promising strategy for combatting the global epidemic of obesity. Many studies have revealed that the ß3-adrenergic receptor agonist is a potent activator of brown adipocytes, even in humans, and PKA and p38 MAPK have been demonstrated for regulating the transcription of a wide range of critical genes such as Ucp1. We previously revealed that the PKA-ASK1-p38 axis is activated in immature brown adipocytes and contributes to functional maturation. However, the downstream mechanisms of PKA that initiate the p38 MAPK cascade are still mostly unknown in mature brown adipocytes. Here, we identified the ASK family as a crucial signaling molecule bridging PKA and MAPK in mature brown adipocytes. Mechanistically, the phosphorylation of ASK1 at threonine 99 and serine 993 is critical in PKA-dependent ASK1 activation. Additionally, PKA also activates ASK2, which contributes to MAPK regulation. These lines of evidence provide new details for tailoring a ßAR-dependent brown adipocyte activation strategy.


Asunto(s)
Adipocitos Marrones/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Receptores Adrenérgicos beta/metabolismo , Animales , Metabolismo Energético , Activación Enzimática , Regulación de la Expresión Génica , Células HEK293 , Humanos , MAP Quinasa Quinasa Quinasa 5/genética , Quinasas Quinasa Quinasa PAM/genética , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Fosforilación , Serina/metabolismo , Treonina/metabolismo
9.
J Biol Chem ; 295(17): 5588-5601, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32144202

RESUMEN

Accumulating evidence suggests that brown adipose tissue (BAT) is a potential therapeutic target for managing obesity and related diseases. PGAM family member 5, mitochondrial serine/threonine protein phosphatase (PGAM5), is a protein phosphatase that resides in the mitochondria and regulates many biological processes, including cell death, mitophagy, and immune responses. Because BAT is a mitochondria-rich tissue, we have hypothesized that PGAM5 has a physiological function in BAT. We previously reported that PGAM5-knockout (KO) mice are resistant to severe metabolic stress. Importantly, lipid accumulation is suppressed in PGAM5-KO BAT, even under unstressed conditions, raising the possibility that PGAM5 deficiency stimulates lipid consumption. However, the mechanism underlying this observation is undetermined. Here, using an array of biochemical approaches, including quantitative RT-PCR, immunoblotting, and oxygen consumption assays, we show that PGAM5 negatively regulates energy expenditure in brown adipocytes. We found that PGAM5-KO brown adipocytes have an enhanced oxygen consumption rate and increased expression of uncoupling protein 1 (UCP1), a protein that increases energy consumption in the mitochondria. Mechanistically, we found that PGAM5 phosphatase activity and intramembrane cleavage are required for suppression of UCP1 activity. Furthermore, utilizing a genome-wide siRNA screen in HeLa cells to search for regulators of PGAM5 cleavage, we identified a set of candidate genes, including phosphatidylserine decarboxylase (PISD), which catalyzes the formation of phosphatidylethanolamine at the mitochondrial membrane. Taken together, these results indicate that PGAM5 suppresses mitochondrial energy expenditure by down-regulating UCP1 expression in brown adipocytes and that its phosphatase activity and intramembrane cleavage are required for UCP1 suppression.


Asunto(s)
Adipocitos Marrones/metabolismo , Regulación hacia Abajo , Metabolismo Energético , Proteínas Mitocondriales/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteína Desacopladora 1/genética , Animales , Células Cultivadas , Células HeLa , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Consumo de Oxígeno , Fosfoproteínas Fosfatasas/genética , Proteína Desacopladora 1/metabolismo
10.
Life Sci Alliance ; 3(3)2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32029570

RESUMEN

Mitochondria play a central role in the function of brown adipocytes (BAs). Although mitochondrial biogenesis, which is indispensable for thermogenesis, is regulated by coordination between nuclear DNA transcription and mitochondrial DNA transcription, the molecular mechanisms of mitochondrial development during BA differentiation are largely unknown. Here, we show the importance of the ER-resident sensor PKR-like ER kinase (PERK) in the mitochondrial thermogenesis of brown adipose tissue. During BA differentiation, PERK is physiologically phosphorylated independently of the ER stress. This PERK phosphorylation induces transcriptional activation by GA-binding protein transcription factor α subunit (GABPα), which is required for mitochondrial inner membrane protein biogenesis, and this novel role of PERK is involved in maintaining the body temperatures of mice during cold exposure. Our findings demonstrate that mitochondrial development regulated by the PERK-GABPα axis is indispensable for thermogenesis in brown adipose tissue.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Retículo Endoplásmico/metabolismo , eIF-2 Quinasa/metabolismo , Adipocitos Marrones/metabolismo , Animales , Diferenciación Celular/genética , ADN Mitocondrial/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos ICR , Mitocondrias/metabolismo , Biogénesis de Organelos , Fosforilación , Transducción de Señal/genética , Termogénesis/fisiología , Transcripción Genética/genética
11.
Medicine (Baltimore) ; 97(33): e11847, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30113477

RESUMEN

Paralytic hip subluxation is a common problem in children with cerebral palsy. Although surgical procedures such as soft tissue release and osteotomy have been advocated for its prevention, the exact indications of such procedures remain unclear. We attempted to evaluate preoperative radiographic parameters and identify prognostic factors in children with cerebral palsy. We retrospectively investigated 43 hips in 27 children with cerebral palsy who had undergone soft tissue release surgery for hip subluxation. We evaluated the age at the time of surgery and the radiographic parameters such as the center-edge angle (CEA), the migration percentage (MP), and the acetabular index (AI) at 3 time points: preoperation, 1 year after surgery, and at final follow-up. The outcome measure was determined by the MP value at final follow-up. Student t test was used to compare the quantitative variables between 2 groups (good vs poor outcome). Then the multiple regression analysis was applied to determine the prognostic factors upon soft tissue release surgery. Children with good outcome exhibited higher CEA (average value of -1.43° vs -13.2° in those with poor outcome), lower MP (53.9% vs 71.3%), and lower AI (28.1° vs 35.3°). Upon multiple regression analysis, we found that the age at the time of surgery, preoperative CEA, and preoperative MP did not appear to be independent prognostic factors. The only independent factor that affected prognosis after soft tissue release surgery was the preoperative AI. The preoperative AI values <34° were associated with the good outcome with specificity of 87% and sensitivity of 60% according to the receiver operating characteristic curve analysis. These findings indicate that the outcome of soft tissue release surgery can be predicted by the preoperative AI value.


Asunto(s)
Parálisis Cerebral/complicaciones , Luxación de la Cadera/diagnóstico por imagen , Liberación de la Cápsula Articular/métodos , Acetábulo/diagnóstico por imagen , Niño , Preescolar , Femenino , Estudios de Seguimiento , Luxación de la Cadera/etiología , Luxación de la Cadera/prevención & control , Luxación de la Cadera/cirugía , Articulación de la Cadera/cirugía , Humanos , Masculino , Análisis Multivariante , Valor Predictivo de las Pruebas , Periodo Preoperatorio , Radiografía/métodos , Radiografía/estadística & datos numéricos , Análisis de Regresión , Estudios Retrospectivos , Resultado del Tratamiento
12.
Biochim Biophys Acta Gen Subj ; 1862(10): 2271-2280, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30031111

RESUMEN

Apoptosis signal-regulating kinase 1 (ASK1) is a key player in the homeostatic response of many organisms. Of the many functions of ASK1, it is most well-known for its ability to induce canonical caspase 3-dependent apoptosis through the MAPK pathways in response to reactive oxygen species (ROS). As ASK1 is a regulator of apoptosis, its proper regulation is critical for the well-being of an organism. To date, several E3 ubiquitin ligases have been identified that are capable of degrading ASK1, signifying the importance of maintaining ASK1 expression levels during stress responses. ASK1 protein regulation under unstimulated conditions, however, is still largely unknown. Using tandem mass spectrometry, we have identified beta-transducin repeat containing protein (ß-TrCP), an E3 ubiquitin ligase, as a novel interacting partner of ASK1 that is capable of ubiquitinating and subsequently degrading ASK1 through the ubiquitin-proteasome system (UPS). This interaction requires the seven WD domains of ß-TrCP and the C-terminus of ASK1. By silencing the ß-TrCP genes, we observed a significant increase in caspase 3 activity in response to oxidative stress, which could subsequently be suppressed by silencing ASK1. These findings suggest that ß-TrCP is capable of suppressing oxidative stress-induced caspase 3-dependent apoptosis through suppression of ASK1, assisting in the organism's ability to maintain homeostasis in an unstable environment.


Asunto(s)
Apoptosis , MAP Quinasa Quinasa Quinasa 5/metabolismo , Estrés Oxidativo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Células HEK293 , Humanos , MAP Quinasa Quinasa Quinasa 5/química , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , Ubiquitinación , Proteínas con Repetición de beta-Transducina/química
13.
Proc Natl Acad Sci U S A ; 115(14): 3646-3651, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29555767

RESUMEN

Daily rhythms of behaviors and physiologies are generated by the circadian clock, which is composed of clock genes and the encoded proteins forming transcriptional/translational feedback loops (TTFLs). The circadian clock is a self-sustained oscillator and flexibly responds to various time cues to synchronize with environmental 24-h cycles. However, the key molecule that transmits cellular stress to the circadian clockwork is unknown. Here we identified apoptosis signal-regulating kinase (ASK), a member of the MAPKKK family, as an essential mediator determining the circadian period and phase of cultured cells in response to osmotic changes of the medium. The physiological impact of ASK signaling was demonstrated by a response of the clock to changes in intracellular redox states. Intriguingly, the TTFLs drive rhythmic expression of Ask genes, indicating ASK-mediated association of the TTFLs with intracellular redox. In behavioral analysis, Ask1, Ask2, and Ask3 triple-KO mice exhibited compromised light responses of the circadian period and phase in their activity rhythms. LC-MS/MS-based proteomic analysis identified a series of ASK-dependent and osmotic stress-responsive phosphorylations of proteins, among which CLOCK, a key component of the molecular clockwork, was phosphorylated at Thr843 or Ser845 in the carboxyl-terminal region. These findings reveal the ASK-dependent stress response as an underlying mechanism of circadian clock flexibility.


Asunto(s)
Relojes Circadianos/fisiología , MAP Quinasa Quinasa Quinasa 5/fisiología , Quinasas Quinasa Quinasa PAM/fisiología , Presión Osmótica , Animales , Conducta Animal , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Fosforilación , Procesamiento Proteico-Postraduccional , Proteómica , Transducción de Señal
15.
EMBO Rep ; 18(11): 2067-2078, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28887319

RESUMEN

A wide variety of cell death mechanisms, such as ferroptosis, have been proposed in mammalian cells, and the classification of cell death attracts global attention because each type of cell death has the potential to play causative roles in specific diseases. However, the precise molecular mechanisms leading to cell death are poorly understood, particularly in ferroptosis. Here, we show that continuous severe cold stress induces ferroptosis and the ASK1-p38 MAPK pathway in multiple cell lines. The activation of the ASK1-p38 pathway is mediated by critical determinants of ferroptosis: MEK activity, iron ions, and lipid peroxide. The chemical compound erastin, a potent ferroptosis inducer, also activates the ASK1-p38 axis downstream of lipid peroxide accumulation and leads to ASK1-dependent cell death in a cell type-specific manner. These lines of evidence provide mechanistic insight into ferroptosis, a type of regulated necrosis.


Asunto(s)
Apoptosis/genética , Hierro/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Estrés Fisiológico/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Células A549 , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Frío , Regulación de la Expresión Génica , Células HEK293 , Células HT29 , Células Hep G2 , Humanos , Peróxidos Lipídicos/biosíntesis , MAP Quinasa Quinasa Quinasa 5/genética , Especificidad de Órganos , Piperazinas/farmacología , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/genética
16.
Adv Biol Regul ; 66: 2-22, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28669716

RESUMEN

Apoptosis signal-regulating kinase 1 (ASK1) was identified as a MAP3K that activates the JNK and p38 pathways, and subsequent studies have reported ASK2 and ASK3 as members of the ASK family. The ASK family is activated by various intrinsic and extrinsic stresses, including oxidative stress, ER stress and osmotic stress. Numerous lines of evidence have revealed that members of the ASK family are critical for signal transduction systems to control a wide range of stress responses such as cell death, differentiation and cytokine induction. In this review, we focus on the precise signaling mechanisms of the ASK family in response to diverse stressors.


Asunto(s)
Quinasas Quinasa Quinasa PAM/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Humanos , MAP Quinasa Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Presión Osmótica , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología
17.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3030-3038, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27693599

RESUMEN

BACKGROUND: Apoptosis signal-regulating kinase 1 (ASK1), also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5), has the potential to induce cellular apoptosis under various physiological conditions. It has long been suggested that ASK1 is highly sensitive to oxidative stress and contributes substantially to apoptosis. However, recent studies have indicated that ASK1 has pleiotropic roles in living organisms through other mechanisms in addition to apoptosis. SCOPE OF THE REVIEW: This review describes the physiological functions of ASK1 in living organisms, focusing on the regulatory mechanisms of ASK1 activity and its importance in the pathogenesis of various diseases. We also highlight recent works published within the past few years. MAJOR CONCLUSIONS: ASK1 forms a high-molecular-mass complex within the cell, designated as the ASK1 signalosome. Soon after the discovery of ASK1, several regulatory components of the ASK1 signalosome have been revealed, including thioredoxin (Trx), tumor-necrosis factor α receptor-associated factors (TRAFs) and 14-3-3s. In parallel with the precise analyses unveiling the molecular basis of ASK1 regulation, the physiological or pathophysiological significance of ASK1 in diverse organs has been elucidated. In addition to the generation of global knockout mice or tissue-specific knockout mice, ASK1-specific inhibitors have illuminated the biological roles of ASK1. GENERAL SIGNIFICANCE: The multi-faceted features of the function of ASK1 have been discovered over the past two decades, revealing that ASK1 is a crucial molecule for maintaining cellular homeostasis, especially under conditions of stress. Based on the results that ASK1 deficiency provides beneficial effects for several diseases, modulating ASK1 activity is a promising method to ameliorate a subset of diseases.


Asunto(s)
Pleiotropía Genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , Animales , Enfermedad , Humanos , Modelos Biológicos , Inhibidores de Proteínas Quinasas/farmacología
18.
EBioMedicine ; 5: 82-92, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27077115

RESUMEN

Phosphoglycerate mutase family member 5 (PGAM5) is a mitochondrial protein phosphatase that has been reported to be involved in various stress responses from mitochondrial quality control to cell death. However, its roles in vivo are largely unknown. Here, we show that Pgam5-deficient mice are resistant to several metabolic insults. Under cold stress combined with fasting, Pgam5-deficient mice better maintained body temperature than wild-type mice and showed an extended survival rate. Serum triglycerides and lipid content in brown adipose tissue (BAT), a center of adaptive thermogenesis, were severely reduced in Pgam5-deficient mice. Moreover, although Pgam5 deficiency failed to maintain proper mitochondrial integrity in BAT, it reciprocally resulted in the dramatic induction of fibroblast growth factor 21 (FGF21) that activates various functions of BAT including thermogenesis. Thus, the enhancement of lipid metabolism and FGF21 may contribute to the cold resistance of Pgam5-deficient mice under fasting condition. Finally, we also found that Pgam5-deficient mice are resistant to high-fat-diet-induced obesity. Our study uncovered that PGAM5 is involved in the whole-body metabolism in response to stresses that impose metabolic challenges on mitochondria.


Asunto(s)
Mitocondrias/metabolismo , Obesidad/genética , Fosfoproteínas Fosfatasas/genética , Estrés Fisiológico/genética , Animales , Temperatura Corporal/genética , Frío , Dieta Alta en Grasa , Ayuno/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/patología , Obesidad/fisiopatología , Fosfoproteínas Fosfatasas/deficiencia , Termogénesis/genética
19.
Nat Commun ; 7: 11158, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27045525

RESUMEN

Recent studies suggest that adult humans have active brown or beige adipocytes, the activation of which might be a therapeutic strategy for the treatment of diverse metabolic diseases. Here we show that the protein kinase ASK1 regulates brown and beige adipocytes function. In brown or white adipocytes, the PKA-ASK1-p38 axis is activated in response to cAMP signalling and contributes to the cell-autonomous induction of genes, including Ucp1. Global and fat-specific ASK1 deficiency leads to impaired metabolic responses, including thermogenesis and oxygen consumption, at the cell and whole-body levels, respectively. Our data thus indicate that the ASK1 signalling axis is a regulator of brown and beige adipocyte gene expression and function.


Asunto(s)
Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Transducción de Señal , Termogénesis/genética , Células 3T3-L1 , Adipocitos Marrones/citología , Adipocitos Blancos/citología , Adipocitos Blancos/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Animales , Diferenciación Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Consumo de Oxígeno/genética , Proteína Desacopladora 1 , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Plant Cell Rep ; 33(6): 849-60, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24430866

RESUMEN

Endogenous JA production is not necessary for wound-induced expression of JA-biosynthetic lipase genes such as DAD1 in Arabidopsis. However, the JA-Ile receptor COI1 is often required for their JA-independent induction. Wounding is a serious event in plants that may result from insect feeding and increase the risk of pathogen infection. Wounded plants produce high amounts of jasmonic acid (JA), which triggers the expression of insect and pathogen resistance genes. We focused on the transcriptional regulation of DEFECTIVE IN ANTHER DEHISCENCE1 and six of its homologs including DONGLE (DGL) in Arabidopsis, which encode lipases involved in JA biosynthesis. Plants constitutively expressing DAD1 accumulated a higher amount of JA than control plants after wounding, indicating that the expression of these lipase genes contributes to determining JA levels. We found that the expression of DAD1, DGL, and other DAD1-LIKE LIPASE (DALL) genes is induced upon wounding. Some DALLs were also expressed in unwounded leaves. Further experiments using JA-biosynthetic and JA-response mutants revealed that the wound induction of these genes is regulated by several distinct pathways. DAD1 and most of its homologs other than DALL4 were fully induced without relying on endogenous JA-Ile production and were only partly affected by JA deficiency, indicating that positive feedback by JA is not necessary for induction of these genes. However, DAD1 and DGL required CORONATINE INSENSITIVE1 (COI1) for their expression, suggesting that a molecule other than JA might act as a regulator of COI1. Wound induction of DALL1, DALL2, and DALL3 did not require COI1. This differential regulation of DAD1 and its homologs might explain their functions at different time points after wounding.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas , Oxilipinas/farmacología , Fosfolipasas A1/genética , Fosfolipasas A/genética , Reguladores del Crecimiento de las Plantas/farmacología , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ciclopentanos/metabolismo , Genes Reporteros , Lipasa/genética , Lipasa/metabolismo , Oxilipinas/metabolismo , Fosfolipasas A/metabolismo , Fosfolipasas A1/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , ARN Mensajero/genética , ARN de Planta/genética , Heridas y Lesiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA