Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Radiother Oncol ; 190: 110019, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000689

RESUMEN

BACKGROUND AND PURPOSE: Concurrent chemo-radiotherapy (CCRT) followed by adjuvant durvalumab is standard-of-care for fit patients with unresectable stage III NSCLC. Intensity modulated proton therapy (IMPT) results in different doses to organs than intensity modulated photon therapy (IMRT). We investigated whether IMPT compared to IMRT reduce hematological toxicity and whether it affects durvalumab treatment. MATERIALS AND METHODS: Prospectively collected series of consecutive patients with stage III NSCLC receiving CCRT between 06.16 and 12.22 (staged with FDG-PET-CT and brain imaging) were retrospectively analyzed. The primary endpoint was the incidence of lymphopenia grade ≥ 3 in IMPT vs IMRT treated patients. RESULTS: 271 patients were enrolled (IMPT: n = 71, IMRT: n = 200) in four centers. All patients received platinum-based chemotherapy. Median age: 66 years, 58 % were male, 36 % had squamous NSCLC. The incidence of lymphopenia grade ≥ 3 during CCRT was 67 % and 47 % in the IMRT and IMPT group, respectively (OR 2.2, 95 % CI: 1.0-4.9, P = 0.03). The incidence of anemia grade ≥ 3 during CCRT was 26 % and 9 % in the IMRT and IMPT group respectively (OR = 4.9, 95 % CI: 1.9-12.6, P = 0.001). IMPT was associated with a lower rate of Performance Status (PS) ≥ 2 at day 21 and 42 after CCRT (13 % vs. 26 %, P = 0.04, and 24 % vs. 39 %, P = 0.02). Patients treated with IMPT had a higher probability of receiving adjuvant durvalumab (74 % vs. 52 %, OR 0.35, 95 % CI: 0.16-0.79, P = 0.01). CONCLUSION: IMPT was associated with a lower incidence of severe lymphopenia and anemia, better PS after CCRT and a higher probability of receiving adjuvant durvalumab.


Asunto(s)
Anemia , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Linfopenia , Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Masculino , Anciano , Femenino , Protones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Retrospectivos , Carcinoma de Pulmón de Células no Pequeñas/terapia , Terapia de Protones/efectos adversos , Terapia de Protones/métodos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/etiología , Linfopenia/etiología , Anemia/etiología , Radioterapia de Intensidad Modulada/efectos adversos , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos
2.
Phys Imaging Radiat Oncol ; 28: 100519, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38111503

RESUMEN

Background and purpose: There is no consensus on the best photon radiation technique for non-small cell lung cancer (NSCLC). This study quantified the differences between commonly used treatment techniques in NSCLC to find the optimal technique. Materials and methods: Treatment plans were retrospectively generated according to clinical guidelines for 26 stage III NSCLC patients using intensity modulated radiation therapy (IMRT), hybrid, and volumetric modulated arc therapy (VMATC, and VMATV5 optimized for lower lung and heart dose). Plans were evaluated for target coverage, organs at risk dose (including heart substructures) and normal tissue complication probabilities (NTCP). Results: The comparison showed significant and largest median differences (>1 Gy or >5%) in favor of IMRT for the mediastinal envelope and heart (maximum dose), in favor of the hybrid technique for the lungs (V5Gy of the total lungs and V5Gy of the contralateral lung) and in favor of VMATC for the heart (Dmean), most of the substructures of the heart, and the spinal cord (maximum dose). The VMATV5 technique had significantly lower heart dose compared to the hybrid technique and significantly lower lung dose compared to the VMATC, combining both advantages in one technique. The mean ΔNTCP did not exceed the 2 percent point (pp) for grade 5 (mortality), and 10 pp for grade ≥2 toxicities (radiation pneumonitis and acute esophageal toxicity), but ΔNTCP was mostly in favor of VMATC/V5 for individual patients. Conclusion: This planning study showed that VMATV5 was preferred as it achieved low lung and heart doses, as well as low NTCPs, simultaneously.

3.
Phys Imaging Radiat Oncol ; 27: 100459, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37397874

RESUMEN

Background and purpose: Efficient workflows for adaptive proton therapy are of high importance. This study evaluated the possibility to replace repeat-CTs (reCTs) with synthetic CTs (sCTs), created based on cone-beam CTs (CBCTs), for flagging the need of plan adaptations in intensity-modulated proton therapy (IMPT) treatment of lung cancer patients. Materials and methods: Forty-two IMPT patients were retrospectively included. For each patient, one CBCT and a same-day reCT were included. Two commercial sCT methods were applied; one based on CBCT number correction (Cor-sCT), and one based on deformable image registration (DIR-sCT). The clinical reCT workflow (deformable contour propagation and robust dose re-computation) was performed on the reCT as well as the two sCTs. The deformed target contours on the reCT/sCTs were checked by radiation oncologists and edited if needed. A dose-volume-histogram triggered plan adaptation method was compared between the reCT and the sCTs; patients needing a plan adaptation on the reCT but not on the sCT were denoted false negatives. As secondary evaluation, dose-volume-histogram comparison and gamma analysis (2%/2mm) were performed between the reCT and sCTs. Results: There were five false negatives, two for Cor-sCT and three for DIR-sCT. However, three of these were only minor, and one was caused by tumour position differences between the reCT and CBCT and not by sCT quality issues. An average gamma pass rate of 93% was obtained for both sCT methods. Conclusion: Both sCT methods were judged to be of clinical quality and valuable for reducing the amount of reCT acquisitions.

4.
Radiother Oncol ; 175: 152-158, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36067908

RESUMEN

BACKGROUND AND PURPOSE: Image-guided radiotherapy using cone beam-CT (CBCT) images is used to evaluate patient anatomy and positioning before radiotherapy. In this study we analyzed and optimized a traffic light protocol (TLP) used in lung cancer patients to identify patients requiring treatment adaptation. MATERIALS AND METHODS: First, CBCT review requests of 243 lung cancer patients were retrospectively analyzed and divided into 6 pre-defined categories. Frequencies and follow-up actions were scored. Based on these results, the TLP was optimized and evaluated in the same way on 230 patients treated in 2018. RESULTS: In the retrospective study, a total of 543 CBCT review requests were created during treatment in 193/243 patients due to changed anatomy of lung (24%), change of tumor volume (24%), review of match (18%), shift of the mediastinum (15%), shift of tumor (15%) and other (4%). The majority of requests (474, 87%) did not require further action. In 6% an adjustment of the match criteria sufficed; in 7% treatment plan adaptation was required. Plan adaptation was frequently seen in the categories changed anatomy of lung, change of tumor volume and shift of tumor outside the PTV. Shift of mediastinum outside PRV and shift of GTV outside CTV (but inside PTV) never required plan adaptation and were omitted to optimize the TLP, which reduced the CBCT review requests by 23%. CONCLUSIONS: The original TLP selected patients that required a treatment adaptation, but with a high false positive rate. The optimized TLP reduced the amount of CBCT review requests, while still correctly identifying patients requiring adaptation.


Asunto(s)
Neoplasias Pulmonares , Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada , Humanos , Radioterapia Guiada por Imagen/métodos , Estudios Retrospectivos , Planificación de la Radioterapia Asistida por Computador/métodos , Flujo de Trabajo , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patología , Tomografía Computarizada de Haz Cónico/métodos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
5.
Med Phys ; 48(8): 4425-4437, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34214201

RESUMEN

PURPOSE: Intensity-modulated proton therapy (IMPT) for lung tumors with a large tumor movement is challenging due to loss of robustness in the target coverage. Often an upper cut-off at 5-mm tumor movement is used for proton patient selection. In this study, we propose (1) a robust and easily implementable treatment planning strategy for lung tumors with a movement larger than 5 mm, and (2) a four-dimensional computed tomography (4DCT) robust evaluation strategy for evaluating the dose distribution on the breathing phases. MATERIALS AND METHODS: We created a treatment planning strategy based on the internal target volume (ITV) concept (aim 1). The ITV was created as a union of the clinical target volumes (CTVs) on the eight 4DCT phases. The ITV expanded by 2 mm was the target during robust optimization on the average CT (avgCT). The clinical plan acceptability was judged based on a robust evaluation, computing the voxel-wise min and max (VWmin/max) doses over 28 error scenarios (range and setup errors) on the avgCT. The plans were created in RayStation (RaySearch Laboratories, Stockholm, Sweden) using a Monte Carlo dose engine, commissioned for our Mevion S250i Hyperscan system (Mevion Medical Systems, Littleton, MA, USA). We developed a new 4D robust evaluation approach (4DRobAvg; aim 2). The 28 scenario doses were computed on each individual 4DCT phase. For each scenario, the dose distributions on the individual phases were deformed to the reference phase and combined to a weighted sum, resulting in 28 weighted sum scenario dose distributions. From these 28 scenario doses, VWmin/max doses were computed. This new 4D robust evaluation was compared to two simpler 4D evaluation strategies: re-computing the nominal plan on each individual 4DCT phase (4DNom) and computing the robust VWmin/max doses on each individual phase (4DRobInd). The treatment planning and dose evaluation strategies were evaluated for 16 lung cancer patients with tumor movement of 4-26 mm. RESULTS: The ratio of the ITV and CTV volumes increased linearly with the tumor amplitude, with an average ratio of 1.4. Despite large ITV volumes, a clinically acceptable plan fulfilling all target and organ at risk (OAR) constraints was feasible for all patients. The 4DNom and 4DRobInd evaluation strategies were found to under- or overestimate the dosimetric effect of the tumor movement, respectively. 4DRobInd showed target underdosage for five patients, not observed in the robust evaluation on the avgCT or in 4DRobAvg. The accuracy of dose deformation used in 4DRobAvg was quantified and found acceptable, with differences for the dose-volume parameters below 1 Gy in most cases. CONCLUSION: The proposed ITV-based planning strategy on the avgCT was found to be a clinically feasible approach with adequate tumor coverage and no OAR overdosage even for large tumor movement. The new proposed 4D robust evaluation, 4DRobAvg, was shown to give an easily interpretable understanding of the effect of respiratory motion dose distribution, and to give an accurate estimate of the dose delivered in the different breathing phases.


Asunto(s)
Neoplasias Pulmonares , Terapia de Protones , Radioterapia de Intensidad Modulada , Tomografía Computarizada Cuatridimensional , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Respiración
6.
Med Phys ; 47(10): 4675-4682, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32654162

RESUMEN

PURPOSE: To externally validate a hidden Markov model (HMM) for classifying gamma analysis results of in vivo electronic portal imaging device (EPID) measurements into different categories of anatomical change for lung cancer patients. Additionally, the relationship between HMM classification and deviations in dose-volume histogram (DVH) metrics was evaluated. METHODS: The HMM was developed at CHU de Québec (CHUQ), and trained on features extracted from gamma analysis maps of in vivo EPID measurements from 483 fractions (24 patients, treated with three-dimensional 3D-CRT or intensity modulated radiotherapy), using the EPID measurement of the first treatment fraction as reference. The model inputs were the average gamma value, standard deviation, and average value of the highest 1% of gamma values, all averaged over all beams in a fraction. The HMM classified each fraction into one of three categories: no anatomical change (Category 1), some anatomical change (no clinical action needed, Category 2) and severe anatomical change (clinical action needed, Category 3). The external validation dataset consisted of EPID measurements from 263 fractions of 30 patients treated at Maastro with volumetric modulated arc therapy (VMAT) or hybrid plans (containing both static beams and VMAT arcs). Gamma analysis features were extracted in the same way as in the CHUQ dataset, by using the EPID measurement of the first fraction as reference (γQ), and additionally by using an EPID dose prediction as reference (γM). For Maastro patients, cone beam computed tomography (CBCT) scans and image-guided radiotherapy (IGRT) classification of these images were available for each fraction. Contours were propagated from the planning CT to the CBCTs, and the dose was recalculated using a Monte Carlo dose engine. Dose-volume histogram metrics for targets and organs-at-risk (OARs: lungs, heart, mediastinum, spinal cord, brachial plexus) were extracted for each fraction, and compared to the planned dose. HMM classification of the external validation set was compared to threshold classification based on the average gamma value alone (a surrogate for clinical classification at CHUQ), IGRT classification as performed at Maastro, and differences in DVH metrics extracted from 3D dose recalculations on the CBCTs. RESULTS: The HMM achieved 65.4%/65.0% accuracy for γQ and γM, respectively, compared to average gamma threshold classification. When comparing HMM classification with IGRT classification, the overall accuracy was 29.7% for γQ and 23.2% for γM. Hence, HMM classification and IGRT classification of anatomical changes did not correspond. However, there is a trend towards higher deviations in DVH metrics with classification into higher categories by the HMM for large OARs (lungs, heart, mediastinum), but not for the targets and small OARs (spinal cord, brachial plexus). CONCLUSION: The external validation shows that transferring the HMM for anatomical change classification to a different center is challenging, but can still be valuable. The HMM trained at CHUQ cannot be used directly to classify anatomical changes in the Maastro data. However, it may be possible to use the model in a different capacity, as an indicator for changes in the 3D dose based on two-dimensional EPID measurements.


Asunto(s)
Neoplasias Pulmonares , Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Mediastino , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
7.
Med Phys ; 45(11): 5105-5115, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30229951

RESUMEN

PURPOSE: Automated techniques for estimating the contours of organs and structures in medical images have become more widespread and a variety of measures are available for assessing their quality. Quantitative measures of geometric agreement, for example, overlap with a gold-standard delineation, are popular but may not predict the level of clinical acceptance for the contouring method. Therefore, surrogate measures that relate more directly to the clinical judgment of contours, and to the way they are used in routine workflows, need to be developed. The purpose of this study is to propose a method (inspired by the Turing Test) for providing contour quality measures that directly draw upon practitioners' assessments of manual and automatic contours. This approach assumes that an inability to distinguish automatically produced contours from those of clinical experts would indicate that the contours are of sufficient quality for clinical use. In turn, it is anticipated that such contours would receive less manual editing prior to being accepted for clinical use. In this study, an initial assessment of this approach is performed with radiation oncologists and therapists. METHODS: Eight clinical observers were presented with thoracic organ-at-risk contours through a web interface and were asked to determine if they were automatically generated or manually delineated. The accuracy of the visual determination was assessed, and the proportion of contours for which the source was misclassified recorded. Contours of six different organs in a clinical workflow were for 20 patient cases. The time required to edit autocontours to a clinically acceptable standard was also measured, as a gold standard of clinical utility. Established quantitative measures of autocontouring performance, such as Dice similarity coefficient with respect to the original clinical contour and the misclassification rate accessed with the proposed framework, were evaluated as surrogates of the editing time measured. RESULTS: The misclassification rates for each organ were: esophagus 30.0%, heart 22.9%, left lung 51.2%, right lung 58.5%, mediastinum envelope 43.9%, and spinal cord 46.8%. The time savings resulting from editing the autocontours compared to the standard clinical workflow were 12%, 25%, 43%, 77%, 46%, and 50%, respectively, for these organs. The median Dice similarity coefficients between the clinical contours and the autocontours were 0.46, 0.90, 0.98, 0.98, 0.94, and 0.86, respectively, for these organs. CONCLUSIONS: A better correspondence with time saving was observed for the misclassification rate than the quantitative contour measures explored. From this, we conclude that the inability to accurately judge the source of a contour indicates a reduced need for editing and therefore a greater time saving overall. Hence, task-based assessments of contouring performance may be considered as an additional way of evaluating the clinical utility of autosegmentation methods.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Aprendizaje Automático , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...