Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Radiat Prot Dosimetry ; 164(1-2): 42-5, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25205835

RESUMEN

Creating a sustainable network in biological and retrospective dosimetry that involves a large number of experienced laboratories throughout the European Union (EU) will significantly improve the accident and emergency response capabilities in case of a large-scale radiological emergency. A well-organised cooperative action involving EU laboratories will offer the best chance for fast and trustworthy dose assessments that are urgently needed in an emergency situation. To this end, the EC supports the establishment of a European network in biological dosimetry (RENEB). The RENEB project started in January 2012 involving cooperation of 23 organisations from 16 European countries. The purpose of RENEB is to increase the biodosimetry capacities in case of large-scale radiological emergency scenarios. The progress of the project since its inception is presented, comprising the consolidation process of the network with its operational platform, intercomparison exercises, training activities, proceedings in quality assurance and horizon scanning for new methods and partners. Additionally, the benefit of the network for the radiation research community as a whole is addressed.


Asunto(s)
Bioensayo/métodos , Planificación en Desastres/organización & administración , Traumatismos por Radiación/prevención & control , Monitoreo de Radiación/métodos , Protección Radiológica/métodos , Liberación de Radiactividad Peligrosa/prevención & control , Urgencias Médicas , Europa (Continente) , Humanos , Exposición a la Radiación/prevención & control , Administración de la Seguridad/organización & administración
2.
Mutat Res ; 766-767: 49-55, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25847272

RESUMEN

Curcumin and trans-resveratrol are well-known antioxidant polyphenols with radiomodulatory properties, radioprotecting non-cancerous cells while radiosensitizing tumor cells. This dual action may be the result of their radical scavenging properties and their effects on cell-cycle checkpoints that are activated in response to radiation-induced chromosomal damage. It could be also caused by their effect on regulatory pathways with impact on detoxification enzymes, the up-regulation of endogenous protective systems, and cell-cycle-dependent processes of DNA damage. This work aims to elucidate the mechanisms underlying the dual action of these polyphenols and investigates under which conditions they exhibit radioprotecting or radiosensitizing properties. The peripheral blood lymphocyte test system was used, applying concentrations ranging from 1.4 to 140µM curcumin and 2.2 to 220µM trans-resveratrol. The experimental design focuses first on their radioprotective effects in non-cycling lymphocytes, as uniquely visualized using cell fusion-mediated premature chromosome condensation, excluding, thus, cell-cycle interference to repair processes and activation of checkpoints. Second, the radiosensitizing potential of these chemicals on the induction of chromatid breaks in cultured lymphocytes following G2-phase irradiation was evaluated by a standardized G2-chromosomal radiosensitivity predictive assay. This assay uses caffeine for G2-checkpoint abrogation and it was applied to obtain an internal control for radiosensitivity testing, which simulates conditions similar to those of the highly radiosensitive lymphocytes of AT patients. The results demonstrate for the first time the cell-cycle-dependent action of these polyphenols. When non-cycling cells are irradiated, the radioprotective properties of curcumin and trans-resveratrol are more prominent. However, when cycling cells are irradiated during G2-phase, the radiosensitizing features of these compounds are more pronounced. This observation offers a new biological basis for the mechanisms underlying the action of these polyphenols in cancer radiotherapy.


Asunto(s)
Ciclo Celular , Curcumina/farmacología , Protectores contra Radiación/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Estilbenos/farmacología , Animales , Células CHO , Ciclo Celular/efectos de los fármacos , Fusión Celular , Células Cultivadas , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Cricetinae , Cricetulus , Fase G2/efectos de los fármacos , Humanos , Pruebas de Mutagenicidad , Tolerancia a Radiación/efectos de los fármacos , Resveratrol
3.
Mol Biol Rep ; 38(6): 3959-66, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21107716

RESUMEN

The objectives of the present work are (1) to verify whether genetic polymorphism in the detoxification gene GSTT1 influences the endogenous sensitivity in terms of sister chromatid exchanges (SCEs)/cell in healthy donors and (2) to test whether in vitro exposure to B[a]P in terms of SCEs/cell can be associated with polymorphism of GSTT1 gene. The presence or absence of the homozygous deletion in GSTT1 gene was determined in peripheral blood cells using multiplex-PCR. For SCEs quantitation, the cytogenetic method used thus far is based on the analysis in metaphase chromosomes. Consequently, G2-arrested cells are not included in the analysis. To overcome this shortcoming of the conventional method, we applied here SCE analysis in G2-phase prematurely condensed chromosomes (G2-PCCs) induced by calyculin-A, using a modified fluorescence-plus-Giemsa staining protocol. Compared to metaphase, a statistically significant increase in the yield of SCEs was notified in the G2-phase analysis after 48 h exposure of peripheral blood lymphocytes to 0.01-1 mM B[a]P, in both GSTT1-positive and -null donors. Therefore, the analysis of SCEs in the G2-phase using calyculin-A induced PCC methodology was shown to be more sensitive compared to the analysis at the metaphase level. Nevertheless, the results obtained do not show an association between the GSTT1 polymorphism with increased endogenous and/or B[a]P-induced SCE-frequencies in peripheral blood lymphocyte chromosomes in vitro. These results highlight not only the effect of B[a]P on cell cycle kinetics but also they demonstrate that conventional cytogenetic analysis at metaphase underestimates the cytogenetic effects of chemicals that delay cell cycle progression in G2-phase.


Asunto(s)
Benzo(a)pireno/farmacología , Fase G2/efectos de los fármacos , Glutatión Transferasa/genética , Linfocitos/citología , Metafase/efectos de los fármacos , Polimorfismo Genético , Intercambio de Cromátides Hermanas/efectos de los fármacos , Genotipo , Humanos , Linfocitos/efectos de los fármacos , Linfocitos/enzimología , Reacción en Cadena de la Polimerasa , Donantes de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...