Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Entomol ; 53(1): 180-187, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38037177

RESUMEN

Harvester ants create habitats along nest rims, which some plants use as refugia. These refugia can enhance ecosystem stability to disturbances like drought and grazing, but their potential role in invasion ecology is not yet tested. Here we examine the effects of drought and grazing on nest-rim refugia of 2 harvester ant species: Pogonomyrmex occidentals and P. rugosus. We selected 4 rangeland sites with high harvester ant nest densities in northern Arizona, USA, with pre-existing grazing exclosures adjacent to heavily grazed habitat. Our objective was to determine whether nest refugia were used by native or exotic plant species for each site and scenario of drought and grazing. We measured vegetation cover on nest surfaces, on nest rims, and at 3 distances (3, 5, and 10 m) from nests. At each site, we sampled 2 treatments (grazed/excluded) during 2 seasons (drought/monsoon). We found that nest rims increased vegetation cover compared with background levels at all sites and in almost all scenarios of treatment and season, indicating that nest rims provide important refugia for plants from drought and cattle grazing. In some cases, plants enhanced on nest rims were native grasses such as blue gramma (Bouteloua gracilis) or forbs such as sunflowers (Helianthus petiolaris). However, nest rims at all sites enhanced exotic species, particularly Russian thistle (Salsola tragus), purslane (Portulaca oleracea), and bull thistle (Cirsium vulgare). These results suggest that harvester ants play important roles in invasion ecology and restoration. We discuss potential mechanisms for why certain plant species use nest-rim refugia and how harvester ant nests contribute to plant community dynamics.


Asunto(s)
Hormigas , Ecosistema , Animales , Bovinos , Masculino , Sequías , Plantas , Ecología , Poaceae
2.
J Insect Sci ; 22(4)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35983692

RESUMEN

Understanding factors that drive biodiversity distributions is central in ecology and critical to conservation. Elevational gradients are useful for studying the effects of climate on biodiversity but it can be difficult to disentangle climate effects from resource differences among habitat types. Here we compare elevational patterns and influences of environmental variables on ground-dwelling arthropods in open- and forested-habitats. We examine these comparisons in three arthropod functional groups (detritivores, predators, and herbivores) and two taxonomic groups (beetles and arachnids). We sampled twelve sites spanning 1,132 m elevation and four life zones, collecting 4,834 individual ground arthropods identified to 123 taxa. Elevation was a strong predicator for arthropod composition, however, patterns differed among functional and taxonomic groups and individual species between open- and forested-habitats. Beetles, arachnids, and predators decreased with elevation in open habitats but increased in forests showing a significant interaction between habitat type and elevation. Detritivores and herbivores showed no elevational patterns. We found 11 arthropod taxa with linear elevational patterns, seven that peaked in abundance at high elevations, and four taxa at low elevations. We also found eight taxa with parabolic elevational patterns that peaked in abundance at mid-elevations. We found that vegetation composition and productivity had stronger explanatory power for arthropod composition in forested habitats, while ground cover was a stronger predictor in open habitats. Temperature and precipitation were important in both habitats. Our findings demonstrate that relationships between animal diversity and elevation can be mediated by habitat type, suggesting that physiological restraints and resource limitations work differently between habitat types.


Asunto(s)
Artrópodos , Escarabajos , Altitud , Animales , Artrópodos/fisiología , Biodiversidad , Escarabajos/fisiología , Ecosistema , Bosques
3.
Ecol Evol ; 10(15): 8313-8322, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32788981

RESUMEN

Terrestrial animal communities are largely shaped by vegetation and climate. With climate also shaping vegetation, can we attribute animal patterns solely to climate? Our study observes ant community changes along climatic gradients (i.e., elevational gradients) within different habitat types (i.e., open and forest) on the Colorado Plateau in the southwestern United States. We sampled ants and vegetation along two elevational gradients spanning 1,132 m with average annual temperature and precipitation differences of 5.7°C and 645mm, respectively. We used regression analyses and structural equation modeling to compare the explanatory powers and effect sizes of climate and vegetation variables on ants. Climate variables had the strongest correlations and the largest effect sizes on ant communities, while vegetation composition, richness, and primary productivity had relatively small effects. Precipitation was the strongest predictor for most ant community metrics. Ant richness and abundance had a negative relationship with precipitation in forested habitats, and positive in open habitats. Our results show strong direct climate effects on ants with little or no effects of vegetation composition or primary productivity, but contrasting patterns between vegetation type (i.e., forested vs. open) with precipitation. This indicates vegetation structure can modulate climate responses of ant communities. Our study demonstrates climate-animal relationships may vary among vegetation types which can impact both findings from elevational studies and how communities will react to changes in climate.

4.
Ecol Appl ; 29(3): e01867, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30710404

RESUMEN

Reforestation is challenging when timber harvested areas have been degraded, invaded by nonnative species, or are of marginal suitability to begin with. Conifers form mutualistic partnerships with ectomycorrhizal fungi (EMF) to obtain greater access to soil resources, and these partnerships may be especially important in degraded areas. However, timber harvest can impact mycorrhizal fungi by removing or compacting topsoil, removing host plants, and warming and drying the soil. We used a field experiment to evaluate the role of EMF in Douglas-fir reforestation in clearcuts invaded by Cytisus scoparius (Scotch broom) where traditional reforestation approaches have repeatedly failed. We tested how planting distance from intact Douglas-fir forest edges influenced reforestation success and whether inoculation with forest soils can be used to restore EMF relationships. We used an Illumina DNA sequencing approach to measure the abundance, richness and composition of ectomycorrhizal fungi on Douglas-fir roots, and assessed differences in Douglas-fir seedling survival and growth near to and far from forest edges with and without forest soil inoculum. Planting Douglas-fir seedlings near forest edges increased seedling survival, growth, and EMF root colonization. Edge proximity had no effect on EMF richness but did change fungal community composition. Inoculations with forest soil did not increase EMF abundance or richness or change community composition, nor did it improve seedling establishment. With Illumina sequencing, we identified two to three times greater species richness than described in previous edge effects studies. Of the 95 EMF species we identified, 40% of the species occurred on less than 5% of the seedlings. The ability to detect fungi at low abundance may explain why we did not detect differences in EMF richness with distance to hosts as previous studies. Our findings suggest that forest edges are suitable for reforestation, even when the interiors of deforested areas are not. We advocate for timber harvest designs that maximize edge habitat where ectomycorrhizal fungi contribute to tree establishment. However, this study does not support the use of inoculation with forest soil as a simple method to enhance EMF and seedling survival.


Asunto(s)
Micorrizas , Pseudotsuga , Bosques , Raíces de Plantas , Plantones , Suelo , Microbiología del Suelo , Árboles
5.
Oecologia ; 130(2): 250-258, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28547148

RESUMEN

While interactions between invaders and resident species have received a great deal of attention recently, the role of mutualists in facilitating or constraining invasions is rarely considered. We investigated the reproductive ecology of two closely related, woody legumes, Cytisus scoparius (Scotch broom) and Genista monspessulana (French broom), invading the same sites. Both species are considered noxious non-native weeds in California, and are considered to be ecologically similar, but Genista has much smaller flowers than Cytisus. Neither species showed appreciable levels of autogamous selfing. When experimentally self-pollinated, Genista demonstrated less depression of fruit set and seed set relative to outcrossed flowers than did Cytisus. At two sites on the Marin peninsula, Calif., Genista flowers were consistently less likely to be pollinated than Cytisus flowers. Genista was significantly pollen limited at both sites, while Cytisus was pollen limited at only the site with lower visitation rates. In the three populations with demonstrable pollen limitation, we found a significant relationship between fruit production and natural pollinator visitation at the level of the individual plant. However, we did not find that overall patterns of fecundity were strongly predicted by differences in pollen limitation between species or between sites. While a previous study found a tight link between patterns of pollinator visitation and patterns of reproduction in Cytisus in Washington State, we conclude that a more complex and variable environment (in terms of resources, herbivores, and florivores) on the Marin Peninsula de-coupled the relationship between pollinators and fruit production in these invaders. Our results suggest that the role of mutualisms in promoting or constraining invasions is likely to vary considerably among invaded communities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...