Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 9(7): e101880, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25000589

RESUMEN

Vascular plants possess multiple mechanisms for defending themselves against pathogens. One well-characterized defense mechanism is systemic acquired resistance (SAR). In SAR, a plant detects the presence of a pathogen and transmits a signal throughout the plant, inducing changes in the expression of various pathogenesis-related (PR) genes. Once SAR is established, the plant is capable of mounting rapid responses to subsequent pathogen attacks. SAR has been characterized in numerous angiosperm and gymnosperm species; however, despite several pieces of evidence suggesting SAR may also exist in non-vascular plants6-8, its presence in non-vascular plants has not been conclusively demonstrated, in part due to the lack of an appropriate culture system. Here, we describe and use a novel culture system to demonstrate that the moss species Amblystegium serpens does initiate a SAR-like reaction upon inoculation with Pythium irregulare, a common soil-borne oomycete. Infection of A. serpens gametophores by P. irregulare is characterized by localized cytoplasmic shrinkage within 34 h and chlorosis and necrosis within 7 d of inoculation. Within 24 h of a primary inoculation (induction), moss gametophores grown in culture became highly resistant to infection following subsequent inoculation (challenge) by the same pathogen. This increased resistance was a response to the pathogen itself and not to physical wounding. Treatment with ß-1,3 glucan, a structural component of oomycete cell walls, was equally effective at triggering SAR. Our results demonstrate, for the first time, that this important defense mechanism exists in a non-vascular plant, and, together with previous studies, suggest that SAR arose prior to the divergence of vascular and non-vascular plants. In addition, this novel moss - pathogen culture system will be valuable for future characterization of the mechanism of SAR in moss, which is necessary for a better understanding of the evolutionary history of SAR in plants.


Asunto(s)
Bryopsida/inmunología , Bryopsida/microbiología , Resistencia a la Enfermedad , Evolución Molecular , Bryopsida/efectos de los fármacos , Resistencia a la Enfermedad/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Pythium/fisiología , Factores de Tiempo , beta-Glucanos/farmacología
2.
Genetics ; 184(2): 411-27, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19917768

RESUMEN

Tetraploid sour cherry (Prunus cerasus) has an S-RNase-based gametophytic self-incompatibility (GSI) system; however, individuals can be either self-incompatible (SI) or self-compatible (SC). Unlike the situation in the Solanaceae, where self-compatibility accompanying polyploidization is often due to the compatibility of heteroallelic pollen, the genotype-dependent loss of SI in sour cherry is due to the compatibility of pollen containing two nonfunctional S haplotypes. Sour cherry individuals with the S(4)S(6)S(36a)S(36b) genotype are predicted to be SC, as only pollen containing both nonfunctional S(36a) and S(36b) haplotypes would be SC. However, we previously found that individuals of this genotype were SI. Here we describe four nonfunctional S(36) variants. Our molecular analyses identified a mutation that would confer loss of stylar S function for one of the variants, and two alterations that might cause loss of pollen S function for all four variants. Genetic crosses showed that individuals possessing two nonfunctional S(36) haplotypes and two functional S haplotypes have reduced self-fertilization due to a very low frequency of transmission of the one pollen type that would be SC. Our finding that the underlying mechanism limiting successful transmission of genetically compatible gametes does not involve GSI is consistent with our previous genetic model for Prunus in which heteroallelic pollen is incompatible. This provides a unique case in which breakdown of SI does not occur despite the potential to generate SC pollen genotypes.


Asunto(s)
Variación Genética , Haplotipos , Prunus/genética , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas F-Box/química , Proteínas F-Box/genética , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Prunus/enzimología , Ribonucleasas/química , Ribonucleasas/genética , Homología de Secuencia
3.
J Hered ; 97(5): 514-20, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16985081

RESUMEN

Gametophytic self-incompatibility (GSI) is an outcrossing mechanism in flowering plants that is genetically controlled by 2 separate genes located at the highly polymorphic S-locus, termed S-haplotype. This study characterizes a pollen part mutant of the S(1)-haplotype present in sour cherry (Rosaceae, Prunus cerasus L.) that contributes to the loss of GSI. Inheritance of S-haplotypes from reciprocal interspecific crosses between the self-compatible sour cherry cultivar Ujfehértói Fürtös carrying the mutated S(1)-haplotype (S(1)'S(4)S(d)S(null)) and the self-incompatible sweet cherry (Prunus avium L.) cultivars carrying the wild-type S(1)-haplotype revealed that the mutated S(1)-haplotype confers unilateral incompatibility with a functional pistil component and a nonfunctional pollen component. The altered sour cherry S(1)-haplotype pollen part mutant, termed S(1)', contains a 615-bp Ds-like element within the S(1)-haplotype-specific F-box protein gene (SFB(1)'). This insertion generates a premature in-frame stop codon that would result in a putative truncated SFB(1) containing only 75 of the 375 amino acids present in the wild-type SFB(1). S(1)' along with 2 other previously characterized Prunus S-haplotype mutants, S(f) and S(6m), illustrate that mobile element insertion is an evolutionary force contributing to the breakdown of GSI.


Asunto(s)
Proteínas F-Box/genética , Haplotipos , Mutación , Proteínas de Plantas/genética , Prunus/genética , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , ADN de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Prunus/clasificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia
4.
Plant Mol Biol ; 62(3): 371-83, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16915517

RESUMEN

Tetraploid sour cherry (Prunus cerasus) exhibits a genotype-dependent loss of gametophytic self-incompatibility that is caused by the accumulation of non-functional S-haplotypes with disrupted pistil component (stylar-S) and/or pollen component (pollen-S) function. Genetic studies using diverse sour cherry germplasm identified non-functional S-haplotypes for which an equivalent wild-type S-haplotype was present in sweet cherry (Prunus avium), a diploid progenitor of sour cherry. In all cases, the non-functional S-haplotype resulted from mutations affecting the stylar component S-RNase or Prunus pollen component S-haplotype-specific F-box protein (SFB). This study determines the molecular bases of three of these S-haplotypes that confer unilateral incompatibility, two stylar-part mutants (S(6m2) and S(13m)) and one pollen-part mutant (S(13)'). Compared to their wild-type alleles, S(6m2)-RNase has a 1 bp deletion, S(13m) -RNase has a 23 bp deletion and SFB(13)' has a 1 bp substitution that lead to premature stop codons. Transcripts were identified for these three alleles, S(6m2)-RNase, S(13m)-RNase, and SFB(13)', however, these transcripts presumably result in altered proteins with a resulting loss of activity. Our characterization of natural pollen-part and stylar-part mutants in sour cherry along with other natural S-haplotype mutants identified in Prunus supports the view that loss of pollen specificity and stylar rejection evolve independently and are caused by structural alterations affecting the S-haplotype. The prevalence of non-functional S-haplotypes in sour cherry but not in sweet cherry (a diploid) suggests that polyploidization and gene duplication were indirectly responsible for the dysfunction of some S-haplotypes and the emergence of self-compatibility in sour cherry. This resembles the specific mode of evolution in yeast where accelerated evolution occurred to one member of the duplicated gene pair.


Asunto(s)
Haplotipos , Prunus/genética , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , Datos de Secuencia Molecular , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
5.
Genetics ; 172(2): 1191-8, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16219786

RESUMEN

The transition from self-incompatibility (SI) to self-compatibility (SC) is regarded as one of the most prevalent transitions in Angiosperm evolution, having profound impacts on the genetic structure of populations. Yet, the identity and function of mutations that result in the breakdown of SI in nature are not well understood. This work provides the first detailed genetic description of the breakdown of S-RNase-mediated gametophytic self-incompatibility (GSI) in a polyploid species that exhibits genotype-dependent loss of SI. Genetic analyses of six natural sour cherry (Rosaceae, Prunus cerasus) selections identified seven independent, nonfunctional S-haplotypes with disrupted pistil component (stylar-S) and/or pollen component (pollen-S) function. A genetic model demonstrating that the breakdown of SI in sour cherry is due to the accumulation of a minimum of two nonfunctional S-haplotypes within a single individual is developed and validated. Our finding that sour cherry is SI when only one nonfunctional S-haplotype is present has significant evolutionary implications since nonfunctional S-haplotypes would be maintained in the population without causing an abrupt shift to SC. Furthermore, we demonstrate that heteroallelic sour cherry pollen is self-incompatible, which is counter to the well-documented phenomenon in the Solanaceae where SC accompanying polyploidization is frequently due to the SC of heteroallelic pollen.


Asunto(s)
Haplotipos , Poliploidía , Prunus/genética , Alelos , Células Germinativas , Endogamia , Modelos Genéticos , Mutación , Polen/genética
6.
Plant J ; 39(4): 573-86, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15272875

RESUMEN

Many Prunus species, including sweet cherry and Japanese apricot, of the Rosaceae, display an S-RNase-based gametophytic self-incompatibility (GSI). The specificity of this outcrossing mechanism is determined by a minimum of two genes that are located in a multigene complex, termed the S locus, which controls the pistil and pollen specificities. SFB, a gene located in the S locus region, encodes an F-box protein that has appropriate S haplotype-specific variation to be the pollen determinant in the self-incompatibility reaction. This study characterizes SFBs of two self-compatible (SC) haplotypes, S(4') and S(f), of Prunus. S(4') of sweet cherry is a pollen-part mutant (PPM) that was produced by X-ray irradiation, while S(f) of Japanese apricot is a naturally occurring SC haplotype that is considered to be a PPM. DNA sequence analysis revealed defects in both SFB(4') and SFB(f). A 4 bp deletion upstream from the HVa coding region of SFB(4') causes a frame-shift that produces transcripts of a defective SFB lacking the two hypervariable regions, HVa and HVb. Similarly, the presence of a 6.8 kbp insertion in the middle of the SFB(f) coding region leads to transcripts for a defective SFB lacking the C-terminal half that contains HVa and HVb. As all reported SFBs of functional S haplotypes encode intact SFB, the fact that the partial loss-of-function mutations in SFB are present in SC mutant haplotypes of Prunus provides additional evidence that SFB is the pollen S gene in GSI in Prunus.


Asunto(s)
Proteínas F-Box/genética , Haplotipos , Proteínas de Plantas/genética , Prunus/genética , Secuencia de Aminoácidos , Secuencia de Bases , Modelos Biológicos , Datos de Secuencia Molecular , Filogenia , Mapeo Físico de Cromosoma , Proteínas de Plantas/química , Polen , Prunus/clasificación , Homología de Secuencia de Aminoácido
7.
J Exp Bot ; 54(392): 2431-7, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14512382

RESUMEN

This study characterizes the S6m-haplotype, a mutated S6-haplotype with an altered HindIII cut site, of sour cherry (Prunus cerasus). Inheritance and pollination studies of S-haplotypes from reciprocal crosses between 'Erdi Botermo' (EB; S4S6mSa) and 'Rheinische Schattenmorelle' (RS; S6SaSbSc) revealed that the S6m-haplotype conferred unilateral incompatibility with a non-functional pistil component and a functional pollen component. Expression analyses of S6-RNase and SFB6, a candidate gene for pollen-S, in the S6m-haplotype showed that SFB6 was transcribed in EB pollen, but S6-RNase was not transcribed in EB styles. These results were consistent with data from the inheritance and pollination studies. Inverse PCR for the flanking regions of S6-RNase in the S6- and S6m-haplotypes revealed an approximately 2600 bp insertion present at approximately 800 bp upstream of the S6-RNase in the S6m-haplotype, which is responsible for the alternation of the HindIII cut site and a possible cause of inhibition of the transcription of S6-RNase. SFB6 was present downstream of S6-RNase in both the S6- and S6m-haplotypes and expressed in the same way, supporting the idea that SFB is a good candidate for pollen-S in Prunus.


Asunto(s)
Flores/genética , Proteínas de Plantas/genética , Polen/genética , Prunus/genética , Alelos , Secuencia de Bases , Cartilla de ADN , Flores/fisiología , Haplotipos , Polen/fisiología , Prunus/fisiología , Mapeo Restrictivo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...