Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8715, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622248

RESUMEN

Metataxonomic studies of ecosystem microbiotas require the simultaneous processing of samples with contrasting physical and biochemical traits. However, there are no published studies of comparisons of different DNA extraction kits to characterize the microbiotas of the main components of terrestrial ecosystems. Here, and to our knowledge for the first time, five DNA extraction kits were used to investigate the composition and diversity of the microbiota of a subset of samples typically studied in terrestrial ecosystems such as bulk soil, rhizosphere soil, invertebrate taxa and mammalian feces. DNA extraction kit was associated with changes in the relative abundance of hundreds of ASVs, in the same samples, resulting in significant differences in alpha and beta diversity estimates of their microbiotas. Importantly, the impact of DNA extraction kit on sample diversity varies according to sample type, with mammalian feces and soil samples showing the most and least consistent diversity estimates across DNA extraction kits, respectively. We show that the MACHEREY-NAGEL NucleoSpin® Soil kit was associated with the highest alpha diversity estimates, providing the highest contribution to the overall sample diversity, as indicated by comparisons with computationally assembled reference communities, and is recommended to be used for any large-scale microbiota study of terrestrial ecosystems.


Asunto(s)
Ecosistema , Microbiota , Animales , ADN Bacteriano/genética , ADN/genética , Heces , Suelo , ARN Ribosómico 16S/genética , Mamíferos/genética
2.
Sci Rep ; 14(1): 869, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195759

RESUMEN

Although male and female mammals differ in biological traits and functional needs, the contribution of this sexual dimorphism to variations in gut bacteria and fungi (gut microbiota) in relation to habitat type has not been fully examined. To understand whether the combination of sex and habitat affects gut microbiota variation, we analyzed 40 fecal samples of wild yellow baboons (Papio cynocephalus) living in contrasting habitat types (intact, well-protected vs. fragmented, less protected forests) in the Udzungwa Mountains of Tanzania. Sex determination was performed using the marker genes SRY (Sex-determining Region Y) and DDX3X-DDX3Y (DEAD-Box Helicase 3). Samples were attributed to 34 individuals (19 females and 15 males) belonging to five social groups. Combining the results of sex determination with two amplicon sequencing datasets on bacterial (V1-V3 region of the 16S rRNA gene) and fungal (ITS2) gut communities, we found that overall, baboon females had a significantly higher gut bacterial richness compared to males. Beta diversity estimates indicated that bacterial composition was significantly different between males and females, and this was true for individuals from both well- and less protected forests. Our results highlight the combined role of sex and habitat type in shaping variation in gut microbial communities in wild non-human primates.


Asunto(s)
Microbioma Gastrointestinal , Papio cynocephalus , Femenino , Masculino , Animales , Papio cynocephalus/genética , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Genes sry , Bosques , Papio , Mamíferos
3.
Sci Rep ; 14(1): 2229, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278818

RESUMEN

The leafhopper genus Arboridia includes several species that feed on Vitis vinifera and cause leaf chlorosis. We report the first alien Arboridia infestation in Italy in 2021 in an Apulian vineyard. To confirm the taxonomic status of the species responsible for crop damage, and reconstruct its demographic history, we barcoded individuals from Apulia together with Arboridia spp. from Crete (Greece), A. adanae from Central Turkey and other specimens of the presumed sister species, A. dalmatina from Dalmatia (Croatia). Molecular phylogenies and barcoding gap analysis identified clades not associated with sampling locations. This result is incongruent with classical specimen assignment and is further supported by morphological analyses, which did not reveal significant differences among the populations. Therefore, we propose A. dalmatina as a junior synonym of A. adanae, which would become the only grapevine-related Arboridia species in the eastern Mediterranean. To further characterise A. adanae evolution, we performed a molecular clock analysis that suggested a radiation during the Pleistocene glaciations. Finally, to assess whether the Apulian individuals carried microorganisms of agricultural relevance, we sequenced their bacterial microbiota using 16S rRNA amplicon sequencing identifying three phytopathogens not generally associated with Arboridia activities as well as Wolbachia in one Apulian haplogroup. We discuss the agricultural implications of this infestation.


Asunto(s)
Hemípteros , Especies Introducidas , Humanos , Animales , ARN Ribosómico 16S/genética , Filogenia , Grecia
4.
Conserv Biol ; 37(6): e14132, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37259636

RESUMEN

The wolf (Canis lupus) is among the most controversial of wildlife species. Abundance estimates are required to inform public debate and policy decisions, but obtaining them at biologically relevant scales is challenging. We developed a system for comprehensive population estimation across the Italian alpine region (100,000 km2 ), involving 1513 trained operators representing 160 institutions. This extensive network allowed for coordinated genetic sample collection and landscape-level spatial capture-recapture analyses that transcended administrative boundaries to produce the first estimates of key parameters for wolf population status assessment. Wolf abundance was estimated at 952 individuals (95% credible interval 816-1120) and 135 reproductive units (i.e., packs) (95% credible interval 112-165). We also estimated that mature individuals accounted for 33-45% of the entire population. The monitoring effort was spatially estimated thereby overcoming an important limitation of citizen science data. This is an important approach for promoting wolf-human coexistence based on wolf abundance monitoring and an endorsement of large-scale harmonized conservation practices.


Una estrategia multidisciplinaria para la estimación del tamaño poblacional de los lobos para la conservación a largo plazo Resumen El lobo (Canis lupus) está entre las especies de fauna más controversiales. Se requieren estimaciones de abundancia para informar al debate público y las decisiones políticas, pero es un reto obtenerlos en escalas con relevancia biológica. Desarrollamos un sistema para la estimación completa de la población en la región alpina de Italia (100,000 km2 ), con la participación de 1,513 operadores entrenados que representan a 160 instituciones. Esta red extensa permitió una colecta coordinada de muestras genéticas y análisis de captura-recaptura espacial que trascendieron las fronteras administrativas para así producir las primeras estimaciones de los parámetros clave para la evaluación del estado de la población de los lobos. Se estimó la abundancia en 952 individuos (95% intervalo de confianza 816-1120) y 135 unidades reproductivas (es decir, manadas) (95% intervalo de confianza 112-165). También estimamos que los individuos maduros representaban el 33-45% de toda la población. El esfuerzo de monitoreo se estimó espacialmente, por lo que sobrepasó una limitación importante de la ciencia ciudadana. Esta estrategia es importante para promover la coexistencia entre lobos y humanos con base en el monitoreo de la abundancia y el apoyo a las prácticas armonizadas de conservación a gran escala.


Asunto(s)
Lobos , Animales , Humanos , Lobos/genética , Conservación de los Recursos Naturales , Densidad de Población , Animales Salvajes
5.
Glob Chang Biol ; 29(9): 2436-2449, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36815401

RESUMEN

Global change is expected to have complex effects on the distribution and transmission patterns of zoonotic parasites. Modelling habitat suitability for parasites with complex life cycles is essential to further our understanding of how disease systems respond to environmental changes, and to make spatial predictions of their future distributions. However, the limited availability of high quality occurrence data with high spatial resolution often constrains these investigations. Using 449 reliable occurrence records for Echinococcus multilocularis from across Europe published over the last 35 years, we modelled habitat suitability for this parasite, the aetiological agent of alveolar echinococcosis, in order to describe its environmental niche, predict its current and future distribution under three global change scenarios, and quantify the probability of occurrence for each European country. Using a machine learning approach, we developed large-scale (25 × 25 km) species distribution models based on seven sets of predictors, each set representing a distinct biological hypothesis supported by current knowledge of the autecology of the parasite. The best-supported hypothesis included climatic, orographic and land-use/land-cover variables such as the temperature of the coldest quarter, forest cover, urban cover and the precipitation seasonality. Future projections suggested the appearance of highly suitable areas for E. multilocularis towards northern latitudes and in the whole Alpine region under all scenarios, while decreases in habitat suitability were predicted for central Europe. Our spatially explicit predictions of habitat suitability shed light on the complex responses of parasites to ongoing global changes.


Asunto(s)
Equinococosis , Echinococcus multilocularis , Parásitos , Animales , Echinococcus multilocularis/fisiología , Equinococosis/epidemiología , Equinococosis/parasitología , Europa (Continente) , Ecosistema , Estadios del Ciclo de Vida , Cambio Climático
6.
Cytogenet Genome Res ; 162(4): 214-230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36455542

RESUMEN

The Western European house mouse is chromosomally diverse, with diploid karyotypes ranging from the standard 40 telocentric chromosomes down to 22 chromosomes. Karyotypes are modified through Robertsonian (Rb) fusion of 2 telocentrics into a single metacentric, occurring repeatedly with fixation, and whole-arm reciprocal translocations (WARTs) generating additional novel karyotypes. Over 100 metacentric populations (chromosomal races) have been identified, geographically clustered into "systems." Chromosomal races within systems often hybridise, and new races may emerge through this hybridisation ("zonal raciation"). We wished to determine the degree to which chromosomal races in a system have evolved independently or share common ancestry. Recombination between chromosomes from hybridising chromosomal races can erase the signals associated with a particular metacentric of interest, making inferences challenging. However, reduced recombination near the centromeres of chromosomal race-specific metacentrics makes centromere-adjacent markers ideal for solving this problem. For the Northern Italy System (NIS), we used microsatellite markers near the centromere to test previous hypotheses about evolutionary relationships of 5 chromosomal races. We chose markers from chromosomes 1, 3, 4, and 6, all of which comprise one arm of a metacentric in at least 2 of these NIS metacentric populations. We used estimates of FST and RST, as well as principal components analyses and neighbour-joining phylogenetic analyses, to infer evolutionary relationships between these 5 chromosomal races and neighbouring mice with the standard karyotype. We showed that the metacentric populations form a single grouping distinct from the standard populations, consistent with their common origin and consistent with a parsimonious sequence of chromosomal rearrangements to explain the relationship of the chromosomal races. That origin and evolution of the chromosomal races in the system would have involved Rb fusions, explaining the occurrence of chromosomal races with diploid numbers as low as 22. However, WARTs and zonal raciation have also been inferred, and the rare occurrence of chromosome 1 in different metacentrics in closely related chromosomal races is almost certainly explained by a WART. Our results with centromeric microsatellites are consistent with the above scenarios, illustrating, once again, the value of markers in the centromeric region to test evolutionary hypotheses in house mouse chromosomal systems.


Asunto(s)
Centrómero , Translocación Genética , Ratones , Animales , Humanos , Filogenia , Centrómero/genética , Cariotipificación , Cariotipo , Translocación Genética/genética , Italia
7.
Genes (Basel) ; 13(11)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36421838

RESUMEN

An assessment of the genetic diversity and structure of a population is essential for designing recovery plans for threatened species. Italy hosts two brown bear populations, Ursus arctos marsicanus (Uam), endemic to the Apennines of central Italy, and Ursus arctos arctos (Uaa), in the Italian Alps. Both populations are endangered and occasionally involved in human-wildlife conflict; thus, detailed management plans have been in place for several decades, including genetic monitoring. Here, we propose a simple cost-effective microsatellite-based protocol for the management of populations with low genetic variation. We sampled 22 Uam and 22 Uaa individuals and analyzed a total of 32 microsatellite loci in order to evaluate their applicability in individual identification. Based on genetic variability estimates, we compared data from four different STR marker sets, to evaluate the optimal settings in long-term monitoring projects. Allelic richness and gene diversity were the highest for the Uaa population, whereas depleted genetic variability was noted for the Uam population, which should be regarded as a conservation priority. Our results identified the most effective STR sets for the estimation of genetic diversity and individual discrimination in Uam (9 loci, PIC 0.45; PID 2.0 × 10-5), and Uaa (12 loci, PIC 0.64; PID 6.9 × 10-11) populations, which can easily be utilized by smaller laboratories to support local governments in regular population monitoring. The method we proposed to select the most variable markers could be adopted for the genetic characterization of other small and isolated populations.


Asunto(s)
Ursidae , Animales , Alelos , Italia , Repeticiones de Microsatélite/genética , Ursidae/genética
8.
PLoS One ; 17(5): e0268045, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35511816

RESUMEN

Surveillance of Echinococcus multilocularis at the edge of its range is hindered by fragmented distributional patterns and low prevalence in definitive hosts. Thus, tests with adequate levels of sensitivity are especially important for discriminating between infected and non-infected areas. In this study we reassessed the prevalence of E. multilocularis at the southern border of its distribution in Province of Bolzano (Alto Adige, northeastern Alps, Italy), to improve surveillance in wildlife and provide more accurate estimates of exposure risk. We compared the diagnostic test currently implemented for surveillance based on coproscopy and multiplex PCR (CMPCR) to a real-time quantitative PCR (qPCR) in 235 fox faeces collected in 2019 and 2020. The performances of the two tests were estimated using a scraping technique (SFCT) applied to the small intestines of a subsample (n = 123) of the same foxes as the reference standard. True prevalence was calculated and the sample size required by each faecal test for the detection of the parasite was then estimated. True prevalence of E. multilocularis in foxes (14.3%) was markedly higher than reported in the last decade, which was never more than 5% from 2012 to 2018 in the same area. In addition, qPCR showed a much higher sensitivity (83%) compared to CMPCR (21%) and agreement with the reference standard was far higher for qPCR (0.816) than CMPCR (0.298) meaning that for the latter protocol, a smaller sample size would be required to detect the disease. Alto Adige should be considered a highly endemic area. Routine surveillance on definitive hosts at the edges of the E. multilocularis distribution should be applied to smaller geographic areas, and rapid, sensitive diagnostic tools using directly host faeces, such as qPCR, should be adopted.


Asunto(s)
Equinococosis , Echinococcus multilocularis , Animales , Equinococosis/diagnóstico , Equinococosis/epidemiología , Equinococosis/veterinaria , Echinococcus multilocularis/genética , Heces/parasitología , Zorros/parasitología , Prevalencia
9.
Sci Rep ; 11(1): 23372, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862385

RESUMEN

The gut microbiota may modulate the disposition and toxicity of environmental contaminants within a host but, conversely, contaminants may also impact gut bacteria. Such contaminant-gut microbial connections, which could lead to alteration of host health, remain poorly known and are rarely studied in free-ranging wildlife. The polar bear (Ursus maritimus) is a long-lived, wide-ranging apex predator that feeds on a variety of high trophic position seal and cetacean species and, as such, is exposed to among the highest levels of biomagnifying contaminants of all Arctic species. Here, we investigate associations between mercury (THg; a key Arctic contaminant), diet, and the diversity and composition of the gut microbiota of polar bears inhabiting the southern Beaufort Sea, while accounting for host sex, age class and body condition. Bacterial diversity was negatively associated with seal consumption and mercury, a pattern seen for both Shannon and Inverse Simpson alpha diversity indices (adjusted R2 = 0.35, F1,18 = 8.00, P = 0.013 and adjusted R2 = 0.26, F1,18 = 6.04, P = 0.027, respectively). No association was found with sex, age class or body condition of polar bears. Bacteria known to either be involved in THg methylation or considered to be highly contaminant resistant, including Lactobacillales, Bacillales and Aeromonadales, were significantly more abundant in individuals that had higher THg concentrations. Conversely, individuals with higher THg concentrations showed a significantly lower abundance of Bacteroidales, a bacterial order that typically plays an important role in supporting host immune function by stimulating intraepithelial lymphocytes within the epithelial barrier. These associations between diet-acquired mercury and microbiota illustrate a potentially overlooked outcome of mercury accumulation in polar bears.


Asunto(s)
Alimentación Animal/toxicidad , Bacterias/clasificación , Microbioma Gastrointestinal/efectos de los fármacos , Mercurio/toxicidad , Análisis de Secuencia de ADN/métodos , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , Caniformia , ADN Bacteriano/genética , ADN Ribosómico/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Filogenia , ARN Ribosómico 16S/genética , Ursidae
10.
Sci Rep ; 11(1): 21569, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732823

RESUMEN

The mammalian gastrointestinal tract harbours a highly complex ecosystem composed of a variety of micro- (bacteria, fungi, viruses, protozoans) and macro-organisms (helminths). Although most microbiota research focuses on the variation of single gut components, the crosstalk between components is still poorly characterized, especially in hosts living under natural conditions. We investigated the gut micro-biodiversity (bacteria, fungi and helminths) of 158 individuals of two wild non-human primates, the Udzungwa red colobus (Procolobus gordonorum) and the yellow baboon (Papio cynocephalus). These species have contrasting diets and lifestyles, but live sympatrically in both human-impacted and pristine forests in the Udzungwa Mountains of Tanzania. Using non-invasive faecal pellets, helminths were identified using standard microscopy while bacteria and fungi were characterized by sequencing the V1-V3 variable region of the 16S rRNA gene for bacteria and the ITS1-ITS2 fragment for fungi. Our results show that both diversity and composition of bacteria and fungi are associated with variation in helminth presence. Although interactions differed by habitat type, in both primates we found that Strongyloides was negatively associated and Trichuris was positively associated with bacterial and fungal richness. To our knowledge, this is one of the few studies demonstrating an interaction between helminth and gut microbiota communities in wild non-human primates.


Asunto(s)
Ecosistema , Microbioma Gastrointestinal , Helmintos/fisiología , Animales , Biodiversidad , Colobinae , Conservación de los Recursos Naturales , ADN Intergénico , Especies en Peligro de Extinción , Ambiente , Heces , Femenino , Bosques , Tracto Gastrointestinal/parasitología , Geografía , Masculino , ARN Ribosómico 16S/metabolismo , Especificidad de la Especie
11.
Viruses ; 13(7)2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34372523

RESUMEN

The picornavirus named 'Ljungan virus' (LV, species Parechovirus B) has been detected in a dozen small mammal species from across Europe, but detailed information on its genetic diversity and host specificity is lacking. Here, we analyze the evolutionary relationships of LV variants circulating in free-living mammal populations by comparing the phylogenetics of the VP1 region (encoding the capsid protein and associated with LV serotype) and the 3Dpol region (encoding the RNA polymerase) from 24 LV RNA-positive animals and a fragment of the 5' untranslated region (UTR) sequence (used for defining strains) in sympatric small mammals. We define three new VP1 genotypes: two in bank voles (Myodes glareolus) (genotype 8 from Finland, Sweden, France, and Italy, and genotype 9 from France and Italy) and one in field voles (Microtus arvalis) (genotype 7 from Finland). There are several other indications that LV variants are host-specific, at least in parts of their range. Our results suggest that LV evolution is rapid, ongoing and affected by genetic drift, purifying selection, spillover and host evolutionary history. Although recent studies suggest that LV does not have zoonotic potential, its widespread geographical and host distribution in natural populations of well-characterized small mammals could make it useful as a model for studying RNA virus evolution and transmission.


Asunto(s)
Evolución Molecular , Especificidad del Huésped , Mamíferos/virología , Parechovirus/clasificación , Parechovirus/genética , Filogenia , Infecciones por Picornaviridae/epidemiología , Regiones no Traducidas 5' , Animales , Europa (Continente)/epidemiología , Variación Genética , Genotipo , Mamíferos/clasificación , Infecciones por Picornaviridae/virología
12.
Viruses ; 13(7)2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203238

RESUMEN

The development of new diagnostic methods resulted in the discovery of novel hepaciviruses in wild populations of the bank vole (Myodes glareolus, syn. Clethrionomys glareolus). The naturally infected voles demonstrate signs of hepatitis similar to those induced by hepatitis C virus (HCV) in humans. The aim of the present research was to investigate the geographical distribution of bank vole-associated hepaciviruses (BvHVs) and their genetic diversity in Europe. Real-time reverse transcription polymerase chain reaction (RT-qPCR) screening revealed BvHV RNA in 442 out of 1838 (24.0%) bank voles from nine European countries and in one of seven northern red-backed voles (Myodes rutilus, syn. Clethrionomys rutilus). BvHV RNA was not found in any other small mammal species (n = 23) tested here. Phylogenetic and isolation-by-distance analyses confirmed the occurrence of both BvHV species (Hepacivirus F and Hepacivirus J) and their sympatric occurrence at several trapping sites in two countries. The broad geographical distribution of BvHVs across Europe was associated with their presence in bank voles of different evolutionary lineages. The extensive geographical distribution and high levels of genetic diversity of BvHVs, as well as the high population fluctuations of bank voles and occasional commensalism in some parts of Europe warrant future studies on the zoonotic potential of BvHVs.


Asunto(s)
Arvicolinae/virología , Variación Genética , Hepacivirus/genética , Hepatitis C/epidemiología , Hepatitis C/veterinaria , Animales , Animales Salvajes/virología , Europa (Continente) , Femenino , Hepacivirus/clasificación , Hepatitis C/transmisión , Humanos , Masculino , Mamíferos/virología , Filogenia , Roedores/virología
14.
PLoS One ; 15(8): e0237262, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760129

RESUMEN

The factors that influence the diversity and composition of raw milk and fecal microbiota in healthy commercial dairy herds are not fully understood, partially because the majority of metataxonomic studies involve experimental farms and/or single factors. We analyzed the raw milk and fecal microbiota of 100 healthy cows from 10 commercial alpine farms from the Province of Trento, Italy, using metataxonomics and applied statistical modelling to investigate which extrinsic and intrinsic parameters (e.g. herd, diet and milk characteristics) correlated with microbiota richness and composition in these relatively small traditional farms. We confirmed that Firmicutes, Ruminococcaceae and Lachnospiraceae families dominated the fecal and milk samples of these dairy cows, but in addition, we found an association between the number of observed OTUs and Shannon entropy on each farm that indicates higher microbiota richness is associated with increased microbiota stability. Modelling showed that herd was the most significant factor affecting the variation in both milk and fecal microbiota composition. Furthermore, the most important predictors explaining the variation of microbiota richness were milk characteristics (i.e. percentage fat) and diet for milk and fecal samples, respectively. We discuss how high intra-herd variation could affect the development of treatments based on microbiota manipulation.


Asunto(s)
Bacterias/aislamiento & purificación , Bovinos/microbiología , Industria Lechera , Heces/microbiología , Leche/microbiología , Alimentación Animal/análisis , Animales , Bacterias/clasificación , Dieta , Grasas/análisis , Femenino , Microbiota , Leche/química
15.
Sci Rep ; 10(1): 10917, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616818

RESUMEN

In light of the current biodiversity crisis, investigating the human impact on non-human primate gut biology is important to understanding the ecological significance of gut community dynamics across changing habitats and its role in conservation. Using traditional coproscopic parasitological techniques, we compared the gastrointestinal protozoan and metazoan symbiont richness of two primates: the Udzungwa red colobus (Procolobus gordonorum) and the yellow baboon (Papio cynocephalus). These species live sympatrically in both protected and unprotected forests within the Udzungwa Mountains of Tanzania with distinct ecological adaptations and diets. Our results showed that terrestrial and omnivorous yellow baboons had 2 (95% CI 1.47-2.73) and 3.78 (2.62-5.46) times higher gut symbiont richness (both including and excluding rare protozoans) compared to the arboreal and leaf-eating Udzungwa red colobus in unprotected and protected forest, respectively. We also found a consistent depletion of symbiont richness in red colobus living in the unprotected forest fragment compared to the continuous protected forests [the latter having 1.97 times (95% CI 1.33-2.92) higher richness], but not in yellow baboons. Richness reduction was particularly evident in the Udzungwa red colobus monkeys, confirming the pattern we reported previously for gut bacterial communities. This study demonstrates the impact of human activities even on the microbiodiversity of the intestinal tract of this species. Against the background of rapid global change and habitat degradation, and given the health benefits of intact gut communities, the decrease in natural gut symbionts reported here is worrying. Further study of these communities should form an essential part of the conservation framework.


Asunto(s)
Amébidos , Colobus , Helmintos , Intestinos , Papio , Simbiosis , Trichostomatida , Animales , Biodiversidad , Dieta , Ecosistema , Heces , Bosques , Actividades Humanas , Especificidad de la Especie , Tanzanía
16.
Vector Borne Zoonotic Dis ; 20(9): 692-702, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32487013

RESUMEN

Ljungan virus (LV), which belongs to the Parechovirus genus in the Picornaviridae family, was first isolated from bank voles (Myodes glareolus) in Sweden in 1998 and proposed as a zoonotic agent. To improve knowledge of the host association and geographical distribution of LV, tissues from 1685 animals belonging to multiple rodent and insectivore species from 12 European countries were screened for LV-RNA using reverse transcriptase (RT)-PCR. In addition, we investigated how the prevalence of LV-RNA in bank voles is associated with various intrinsic and extrinsic factors. We show that LV is widespread geographically, having been detected in at least one host species in nine European countries. Twelve out of 21 species screened were LV-RNA PCR positive, including, for the first time, the red vole (Myodes rutilus) and the root or tundra vole (Alexandromys formerly Microtus oeconomus), as well as in insectivores, including the bicolored white-toothed shrew (Crocidura leucodon) and the Valais shrew (Sorex antinorii). Results indicated that bank voles are the main rodent host for this virus (overall RT-PCR prevalence: 15.2%). Linear modeling of intrinsic and extrinsic factors that could impact LV prevalence showed a concave-down relationship between body mass and LV occurrence, so that subadults had the highest LV positivity, but LV in older animals was less prevalent. Also, LV prevalence was higher in autumn and lower in spring, and the amount of precipitation recorded during the 6 months preceding the trapping date was negatively correlated with the presence of the virus. Phylogenetic analysis on the 185 base pair species-specific sequence of the 5' untranslated region identified high genetic diversity (46.5%) between 80 haplotypes, although no geographical or host-specific patterns of diversity were detected.


Asunto(s)
Parechovirus/aislamiento & purificación , Infecciones por Picornaviridae/veterinaria , Animales , Peso Corporal , Eulipotyphla , Europa (Continente)/epidemiología , Parechovirus/clasificación , Parechovirus/genética , Filogenia , Infecciones por Picornaviridae/epidemiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Roedores , Estaciones del Año
17.
mSystems ; 5(3)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457237

RESUMEN

Human exploitation and destruction of tropical resources are currently threatening innumerable wild animal species, altering natural ecosystems and thus, food resources, with profound effects on gut microbiota. Given their conservation status and the importance to tropical ecosystems, wild nonhuman primates make excellent models to investigate the effect of human disturbance on the diversity of host-associated microbiota. Previous investigations have revealed a loss of fecal bacterial diversity in primates living in degraded compared to intact forests. However, these data are available for a limited number of species, and very limited information is available on the fungal taxa hosted by the gut. Here, we estimated the diversity and composition of gut bacterial and fungal communities in two primates living sympatrically in both human-modified and pristine forests in the Udzungwa Mountains of Tanzania. Noninvasively collected fecal samples of 12 groups of the Udzungwa red colobus (Procolobus gordonorum) (n = 89), a native and endangered primate (arboreal and predominantly leaf-eating), and five groups of the yellow baboon (Papio cynocephalus) (n = 69), a common species of least concern (ground-feeding and omnivorous), were analyzed by the V1-V3 region of the 16S rRNA gene (bacterial) and ITS1-ITS2 (fungal) sequencing. Gut bacterial diversities were associated with habitat in both species, most likely depending on their ecological niches and associated digestive physiology, dietary strategies, and locomotor behavior. In addition, fungal communities also show distinctive traits across hosts and habitat type, highlighting the importance of investigating this relatively unexplored gut component.IMPORTANCE Gut microbiota diversity has become the subject of extensive research in human and nonhuman animals, linking diversity and composition to gut function and host health. Because wild primates are good indicators of tropical ecosystem health, we developed the idea that they are a suitable model to observe the consequences of advancing global change (e.g., habitat degradation) on gut microbiota. So far, most of the studies focus mainly on gut bacteria; however, they are not the only component of the gut: fungi also serve essential functions in gut homeostasis. Here, for the first time, we explore and measure diversity and composition of both bacterial and fungal microbiota components of two tropical primate species living in highly different habitat types (intact versus degraded forests). Results on their microbiota diversity and composition are discussed in light of conservation issues and potential applications.

18.
PLoS One ; 14(12): e0225142, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31800582

RESUMEN

Gastrointestinal parasites colonizing the mammalian gut influence the host immune system and health. Parasite infections, mainly helminths, have been studied intensively in both humans and non-human animals, but relatively rarely within a conservation framework. The Udzungwa red colobus monkey (Procolobus gordonorum) is an endangered endemic primate species living in the Udzungwa Mountains of Tanzania, a global biodiversity hotspot. Since this endemic primate species is highly sensitive to human disturbance, here we investigate whether habitat type (driven by natural and human-induced factors) is associated with helminth diversity. Using standard flotation and sedimentation techniques, we analyzed 251 fecal samples belonging to 25 social groups from four different forest blocks within the Udzungwa Mountains. Five parasitic helminth taxa were recovered from Udzungwa red colobus, including Trichuris sp., Strongyloides fulleborni, S. stercoralis, a strongylid nematode and Colobenterobius sp. We used Generalized Linear Mixed Models to explore the contribution of habitat type, altitude and fecal glucocorticoid levels (as biomarkers of stress) in predicting gut parasite variation. Although some parasites (e.g., Trichuris sp.) infected more than 50% of individuals, compared to others (e.g., Colobenterobius sp.) that infected less than 3%, both parasite richness and prevalence did not differ significantly across forests, even when controlling for seasonality. Stress hormone levels also did not predict variation in parasite richness, while altitude could explain it resulting in lower richness at lower altitudes. Because human activities causing disturbance are concentrated mainly at lower altitudes, we suggest that protection of primate forest habitat preserves natural diversity at both macro- and microscales, and that the importance of the latter should not be underestimated.


Asunto(s)
Altitud , Colobinae/parasitología , Ecosistema , Estrés Psicológico/parasitología , Animales , Colobinae/fisiología , Especies en Peligro de Extinción , Strongyloides/patogenicidad , Trichuris/patogenicidad
19.
ISME J ; 13(12): 2916-2926, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31378786

RESUMEN

The gut microbiota plays a critical role in host health, yet remains poorly studied in wild species. Polar bears (Ursus maritimus), key indicators of Arctic ecosystem health and environmental change, are currently affected by rapid shifts in habitat that may alter gut homeostasis. Declining sea ice has led to a divide in the southern Beaufort Sea polar bear subpopulation such that an increasing proportion of individuals now inhabit onshore coastal regions during the open-water period ('onshore bears') while others continue to exhibit their typical behaviour of remaining on the ice ('offshore bears'). We propose that bears that have altered their habitat selection in response to climate change will exhibit a distinct gut microbiota diversity and composition, which may ultimately have important consequences for their health. Here, we perform the first assessment of abundance and diversity in the faecal microbiota of wild polar bears using 16S rRNA Illumina technology. We find that bacterial diversity is significantly higher in onshore bears compared to offshore bears. The most enriched OTU abundance in onshore bears belonged to the phylum Proteobacteria, while the most depleted OTU abundance within onshore bears was seen in the phylum Firmicutes. We conclude that climate-driven changes in polar bear land use are associated with distinct microbial communities. In doing so, we present the first case of global change mediated alterations in the gut microbiota of a free-roaming wild animal.


Asunto(s)
Bacterias/aislamiento & purificación , Heces/microbiología , Microbioma Gastrointestinal , Ursidae/microbiología , Animales , Animales Salvajes/microbiología , Regiones Árticas , Bacterias/clasificación , Bacterias/genética , Cambio Climático , ADN Bacteriano/genética , Ecosistema , Cubierta de Hielo/química , Filogenia , ARN Ribosómico 16S/genética
20.
Ticks Tick Borne Dis ; 9(2): 164-170, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28890111

RESUMEN

The aim of this study was to determine the occurrence of Anaplasma phagocytophilum, Rickettsia spp., Babesia spp., and Candidatus Neoehrlichia mikurensis in Ixodes spp. ticks removed from wildlife, domestic animals and humans in the Province of Trento (northern Italy) in order to better understand their ecology and provide public health professionals with an updated list of pathogens which should be considered during their diagnostic procedures after a tick bite. During 2011-2012, 848 feeding ticks at all life stages (adults, nymphs and larvae) from various hosts (wild ungulates, birds and rodents; domestic sheep, dogs and humans) were collected. The highest prevalences of A. phagocytophilum and Rickettsia spp. were detected in adult and nymphal tick stages feeding on wild ungulates (11.4% prevalence for both pathogens), while the Babesia spp. prevailed in nymphal and larval ticks feeding on wild birds (7.7%). A wide spectrum of tick-borne agents was present in larval ticks: those detached from wild ungulates were positive for A. phagocytophilum, B. venatorum, R. helvetica, R. monacensis and R. raoultii, while those removed from wild rodents were positive for B. venatorum, R. helvetica, R. monacensis and Ca. N. mikurensis, and ticks from wild birds carried A. phagocytophilum, B. venatorum, B. capreoli and R. helvetica. This study provides evidence of circulation of five tick-borne pathogens not reported in this region before, specifically R. raoultii, R. monacensis, B. venatorum, B. capreoli and B. microti. Furthermore, it discusses the epidemiological role of the animal species from which the ticks were collected highlighting the needs for more experimental studies especially for those pathogens where transovarial transmission in ticks has been demonstrated.


Asunto(s)
Infecciones por Anaplasmataceae , Babesiosis/epidemiología , Reservorios de Enfermedades/veterinaria , Ixodes , Infecciones por Rickettsia , Enfermedades por Picaduras de Garrapatas , Anaplasmataceae/aislamiento & purificación , Infecciones por Anaplasmataceae/epidemiología , Infecciones por Anaplasmataceae/microbiología , Infecciones por Anaplasmataceae/veterinaria , Animales , Animales Domésticos , Animales Salvajes , Babesia/aislamiento & purificación , Babesiosis/parasitología , Reservorios de Enfermedades/microbiología , Reservorios de Enfermedades/parasitología , Humanos , Italia/epidemiología , Ixodes/crecimiento & desarrollo , Ixodes/microbiología , Ixodes/parasitología , Larva/crecimiento & desarrollo , Larva/microbiología , Larva/parasitología , Ninfa/crecimiento & desarrollo , Ninfa/microbiología , Ninfa/parasitología , Prevalencia , Rickettsia/aislamiento & purificación , Infecciones por Rickettsia/epidemiología , Infecciones por Rickettsia/microbiología , Infecciones por Rickettsia/veterinaria , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/microbiología , Enfermedades por Picaduras de Garrapatas/parasitología , Enfermedades por Picaduras de Garrapatas/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA